Predictive Collective Variable Discovery

with Deep Bayesian Models in Atomistic Systems.

M. Schöberl^{1,2,3}, N. Zabaras¹, P.-S. Koutsourelakis² meeting venue meeting date

¹Center for Informatics and Computational Science, University of Notre Dame, Indiana, USA. ²Continuum Mechanics Group, Technical University of Munich, Germany. ³Fellow, Hanns-Seidel-Foundataion, Germany.

Predictive Collective Variable Discovery

nschoeberl@gmail.com

Which set of collective variables (CVs) captures resilient and parsimonious features in atomistic systems?

Figure 1: Alanine Dipeptide. Exemplary collective variables.

Which set of collective variables (CVs) captures resilient and parsimonious features in atomistic systems?

Figure 1: Alanine Dipeptide. Exemplary collective variables.

• Relevant coordinates are highly clustered around a set of *lower dimensional collective variables*.

[Banon]

 Vast combinatoric possibilities for *choosing* CVs. [Chakraborty et al. (2018)]

Questions we address

- How to identify good CVs?
- What are good CVs?
- How to quantify "good"?
- Are identified CVs physically interpretable?

Motivation

Questions we address

- How to identify good CVs?
- What are good CVs?
- How to quantify "good"?
- Are identified CVs physically interpretable?

Probabilistic predictions

- How to use utilize identified CVs for *predictive* purposes?
- How to quantify predictive *uncertainty*?

Methodologies for identifying collective variables at our disposal:

- 1. Intuition-, path-, state-based coordinates.
- 2. Linear dimensionality reduction methods.
 - Principal component analysis (PCA) [F.R.S. (1901); Hotelling (1933)].
 - Multidimensional scaling (MDS) [Troyer and Cohen].

Methodologies for identifying collective variables at our disposal:

- 1. Intuition-, path-, state-based coordinates.
- 2. Linear dimensionality reduction methods.
 - Principal component analysis (PCA) [F.R.S. (1901); Hotelling (1933)].
 - Multidimensional scaling (MDS) [Troyer and Cohen].
- 3. Nonlinear dimensionality reduction methods.
 - Isometric feature map (Isomap) [Tenenbaum et al. (2000)].
 - Sketch map [Ceriotti et al. (2011)] .
 - Diffusion maps (and locally scaled diffusion maps) [Coifman et al. (2005); Nadler et al. (2006)] .
 - Kinetic map [Noé and Clementi (2015)] and Commute maps [Noé et al. (2016)].

Physical intuition does not suffice for identifying good collective variables [Rohrdanz et al. (2013)].

Problem definition - Equilibrium statistical mechanics

mschoeberl@gmail.com

tomistic model
$$p(\mathbf{x}) \propto e^{-\beta U(\mathbf{x})}$$

• $\mathbf{x} \in \mathcal{M}$: atomistic coordinates

A

- U(x): atomistic potential
- Observables: $\mathbb{E}_{p(\mathbf{x})}[a] = \int a(\mathbf{x}) p(\mathbf{x}) d\mathbf{x}$

CV representation

$$z = \mathcal{R}(x), \quad \text{dim}(z) << \text{dim}(x)$$

- z: (reduced) collective variables.
- *R*: operator (mapping onto CV space).

mschoeberl@gmail.com

Introduce $p(\mathbf{z})$ and $p(\mathbf{x}|\mathbf{z})$, thus the joint $p(\mathbf{x}, \mathbf{z})$:

Methodology - Probabilistic generative model

Data $\mathbf{x}^{(i)} \sim p(\mathbf{x})$

Methodology - Probabilistic generative model

mschoeberl@gmail.com

Data $\mathbf{x}^{(i)} \sim p(\mathbf{x})$

Proposed generative model [Jordan (1999)]

adopted from Predictive Coarse-Graining [Schöberl, Zabars, and Koutsourelakis (2017)] [Felsberger and Koutsourelakis, Wed.]

$$\underbrace{p(\mathbf{z})}_{CV.} \xrightarrow{p(\mathbf{x}|\mathbf{z})} \overline{p}(\mathbf{x}) = \int p(\mathbf{x}|\mathbf{z}) \ p(\mathbf{z}) \ d\mathbf{z}$$

Proposed generative model [Jordan (1999)]

adopted from Predictive Coarse-Graining [Schöberl, Zabars, and Koutsourelakis (2017)]

[Felsberger and Koutsourelakis, Wed.]

$$\underbrace{p(\mathbf{z})}_{\text{CV.}} \xrightarrow{p(\mathbf{x}|\mathbf{z})} \overline{p}(\mathbf{x}) = \int p(\mathbf{x}|\mathbf{z}) p(\mathbf{z}) d\mathbf{z}$$

• CVs z as latent generator for atomistic coordinates x.

Proposed generative model [Jordan (1999)]

adopted from Predictive Coarse-Graining [Schöberl, Zabars, and Koutsourelakis (2017)]

[Felsberger and Koutsourelakis, Wed.]

$$\underbrace{p(\mathbf{z})}_{\text{CV.}} \xrightarrow{p(\mathbf{x}|\mathbf{z})} \bar{p}(\mathbf{x}) = \int p(\mathbf{x}|\mathbf{z}) p(\mathbf{z}) d\mathbf{z}$$

- CVs z as latent generator for atomistic coordinates x.
- Probabilistic map from CVs z to the atomistic coordinates x, via p(x|z).

Methodology - Probabilistic generative model

Proposed generative model [Jordan (1999)]

adopted from Predictive Coarse-Graining [Schöberl, Zabars, and Koutsourelakis (2017)]

[Felsberger and Koutsourelakis, Wed.]

$$\underbrace{p(\mathbf{z})}_{\text{CV space.}} \xrightarrow{p(\mathbf{x}|\mathbf{z})} \overline{p}(\mathbf{x}) = \int p(\mathbf{x}|\mathbf{z}) \ p(\mathbf{z}) \ d\mathbf{z}$$

- CVs z as latent generator for atomistic coordinates x.
- Probabilistic map from CVs z to the atomistic coordinates x, via p(x|z).
- Posterior distribution p(z|x) = p(x|z)p(z)/p(x)/p(x) represents code/dictionary for mapping atomistic coordinates x into its lower dimensional CV embedding z. (intractable, e.g. use approximate inference thus approximate posterior with q(z|x)).

Methodology - Learning

The marginal log-likelihood of the data set $\mathbf{X} = {\mathbf{x}^{(i)}}_{i=1}^{N}$:

$$\log p(\mathbf{x}^{(i)}, \cdots, \mathbf{x}^{(N)}) = \sum_{i=1}^{N} \log p_{\boldsymbol{\theta}}(\mathbf{x}^{(i)}),$$

with $\log p_{\theta}(x^{(i)})$ for one datapoint $x^{(i)}$:

Lower bound the log-likelihood

[Dempster et al. (1977)]

$$\begin{split} \log p_{\theta}(\mathbf{x}^{(i)}) &= \log \int p_{\theta}(\mathbf{x}^{(i)} | \mathbf{z}^{(i)}) p_{\theta}(\mathbf{z}^{(i)}) \, d\mathbf{z} \\ &= \log \int q_{\phi}(\mathbf{z}^{(i)} | \mathbf{x}^{(i)}) \frac{p_{\theta}(\mathbf{x}^{(i)} | \mathbf{z}^{(i)}) p_{\theta}(\mathbf{z}^{(i)})}{q_{\phi}(\mathbf{z}^{(i)} | \mathbf{x}^{(i)})} \, d\mathbf{z} \\ &\geq \int q_{\phi}(\mathbf{z}^{(i)} | \mathbf{x}^{(i)}) \log \frac{p_{\theta}(\mathbf{x}^{(i)} | \mathbf{z}^{(i)}) p_{\theta}(\mathbf{z}^{(i)})}{q_{\phi}(\mathbf{z}^{(i)} | \mathbf{x}^{(i)})} \, d\mathbf{z} = \mathcal{L}(\theta, \phi; \mathbf{x}^{(i)}) \end{split}$$

The log-likelihood is decomposed into: [Beal and Ghahramani (2006); Kingma

and Welling (2013); Rezende et al. (2014)]

$$\log p_{\theta}(\mathbf{x}^{(i)}) = \underbrace{\mathcal{L}(\theta, \phi; \mathbf{x}^{(i)})}_{\text{variational lower bound, since } D_{KL} > 0} + \underbrace{D_{KL}(q_{\phi}(\mathbf{z}^{(i)}|\mathbf{x}^{(i)})||p_{\theta}(\mathbf{z}^{(i)}|\mathbf{x}^{(i)}))}_{\geq 0}$$

The log-likelihood is decomposed into: [Beal and Ghahramani (2006); Kingma

and Welling (2013); Rezende et al. (2014)]

$$\log p_{\theta}(\mathbf{x}^{(i)}) = \underbrace{\mathcal{L}(\theta, \phi; \mathbf{x}^{(i)})}_{\text{variational lower bound, since } D_{KL} \ge 0} + \underbrace{D_{KL}(q_{\phi}(\mathbf{z}^{(i)}|\mathbf{x}^{(i)})||p_{\theta}(\mathbf{z}^{(i)}|\mathbf{x}^{(i)}))}_{\ge 0}$$
$$\log p_{\theta}(\mathbf{x}^{(i)}) \ge \mathcal{L}(\theta, \phi; \mathbf{x}^{(i)}) = -\underbrace{D_{KL}(q_{\phi}(\mathbf{z}^{(i)}|\mathbf{x}^{(i)})||p_{\theta}(\mathbf{z}))}_{\text{Regularize } \phi, \text{ such that } q_{\phi}(\mathbf{z}^{(i)}|\mathbf{x}^{(i)})} + \underbrace{\mathbb{E}_{q_{\phi}(\mathbf{z}^{(i)}|\mathbf{x}^{(i)})}[\log p_{\theta}(\mathbf{x}^{(i)}|\mathbf{z}^{(i)})]}_{\text{Expected neg. reconstruction error.}}$$

with the approximate posterior $q_{\phi}(\mathbf{z}^{(i)}|\mathbf{x}^{(i)})$, e.g. a distribution of the exponential family.

The log-likelihood is decomposed into: [Beal and Ghahramani (2006); Kingma and Welling (2013); Rezende et al. (2014)]

 $\log p_{\theta}(\mathbf{x}^{(i)}) = \underbrace{\mathcal{L}(\theta, \phi; \mathbf{x}^{(i)})}_{\text{variational lower bound, since } D_{KL} \ge 0} + \underbrace{D_{KL}(q_{\phi}(\mathbf{z}^{(i)}|\mathbf{x}^{(i)})||p_{\theta}(\mathbf{z}^{(i)}|\mathbf{x}^{(i)}))}_{\ge 0} \\ \log p_{\theta}(\mathbf{x}^{(i)}) \ge \mathcal{L}(\theta, \phi; \mathbf{x}^{(i)}) = -\underbrace{D_{KL}(q_{\phi}(\mathbf{z}^{(i)}|\mathbf{x}^{(i)})||p_{\theta}(\mathbf{z}))}_{\text{Regularize } \phi, \text{ such that } q_{\phi}(\mathbf{z}^{(i)}|\mathbf{x}^{(i)})} + \underbrace{\mathbb{E}_{q_{\phi}(\mathbf{z}^{(i)}|\mathbf{x}^{(i)})}[\log p_{\theta}(\mathbf{x}^{(i)}|\mathbf{z}^{(i)})]}_{\text{Expected neg. reconstruction error.}}$

with the approximate posterior $q_{\phi}(\mathbf{z}^{(i)}|\mathbf{x}^{(i)})$, e.g. a distribution of the exponential family.

The log-likelihood is decomposed into: [Beal and Ghahramani (2006); Kingma and Welling (2013); Rezende et al. (2014)]

$$\log p_{\theta}(\mathbf{x}^{(i)}) = \underbrace{\mathcal{L}(\theta, \phi; \mathbf{x}^{(i)})}_{\text{variational lower bound, since } D_{KL} \ge 0} + \underbrace{D_{KL}(q_{\phi}(\mathbf{z}^{(i)}|\mathbf{x}^{(i)})||p_{\theta}(\mathbf{z}^{(i)}|\mathbf{x}^{(i)}))}_{\ge 0}$$
$$\log p_{\theta}(\mathbf{x}^{(i)}) \ge \mathcal{L}(\theta, \phi; \mathbf{x}^{(i)}) = -\underbrace{D_{KL}(q_{\phi}(\mathbf{z}^{(i)}|\mathbf{x}^{(i)})||p_{\theta}(\mathbf{z}))}_{\text{Regularize } \phi, \text{ such that } q_{\phi}(\mathbf{z}^{(i)}|\mathbf{x}^{(i)})}_{\text{in aggregation is close to } p_{\theta}(\mathbf{z})} + \underbrace{\mathbb{E}_{q_{\phi}(\mathbf{z}^{(i)}|\mathbf{x}^{(i)})}_{\text{Expected neg. reconstruction error.}}}$$

with the approximate posterior $q_{\phi}(\mathbf{z}^{(i)}|\mathbf{x}^{(i)})$, e.g. a distribution of the exponential family.

The log-likelihood is decomposed into: [Beal and Ghahramani (2006); Kingma and Welling (2013); Rezende et al. (2014)]

$$\log p_{\theta}(\mathbf{x}^{(i)}) = \underbrace{\mathcal{L}(\theta, \phi; \mathbf{x}^{(i)})}_{\text{variational lower bound, since } D_{KL} \ge 0} + \underbrace{D_{KL}(q_{\phi}(\mathbf{z}^{(i)}|\mathbf{x}^{(i)})||p_{\theta}(\mathbf{z}^{(i)}|\mathbf{x}^{(i)}))}_{\ge 0}$$
$$\log p_{\theta}(\mathbf{x}^{(i)}) \ge \mathcal{L}(\theta, \phi; \mathbf{x}^{(i)}) = -\underbrace{D_{KL}(q_{\phi}(\mathbf{z}^{(i)}|\mathbf{x}^{(i)})||p_{\theta}(\mathbf{z}))}_{\text{Regularize } \phi, \text{ such that } q_{\phi}(\mathbf{z}^{(i)}|\mathbf{x}^{(i)})}_{\phi(\mathbf{z})} + \underbrace{\mathbb{E}_{q_{\phi}(\mathbf{z}^{(i)}|\mathbf{x}^{(i)})}[\log p_{\theta}(\mathbf{x}^{(i)}|\mathbf{z}^{(i)})]}_{\text{Expected neg. reconstruction error.}}$$

with the approximate posterior $q_{\phi}(\mathbf{z}^{(i)}|\mathbf{x}^{(i)})$, e.g. a distribution of the exponential family.

Discovery of CVs as approximate Bayesian inference, i.e. identify the code/dictionary $q_{\phi}(z|x)$.

• MLE estimate

 $\max_{\boldsymbol{\phi},\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta},\boldsymbol{\phi};\mathbf{X})$

• MAP estimate

$$\max_{\boldsymbol{\phi},\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta},\boldsymbol{\phi};\boldsymbol{X}) + \underbrace{\log p(\boldsymbol{\theta})}_{log-prior}$$

• MLE estimate

$$\max_{\phi,\theta} \mathcal{L}(\theta,\phi;\mathsf{X})$$

MAP estimate

$$\max_{\phi,\theta} \mathcal{L}(\theta,\phi;\mathsf{X}) + \underbrace{\log p(\theta)}_{log-prior}$$

• Approximate Bayesian posterior of decoding parameters θ , $p(\theta|\mathbf{X})$, with Laplace approximation.

Figure 2: Laplace approximation: $p(\theta|X) \approx \mathcal{N}(\mu, S)$

· $p(\boldsymbol{\theta}|\mathbf{X}) \approx \mathcal{N}(\boldsymbol{\mu}, \mathbf{S})$

$$\cdot \; oldsymbol{\mu} = oldsymbol{ heta}_{ extsf{MAP}}$$

•
$$S^{-1} = -\frac{\partial^2 \mathcal{L}(\theta, \phi; X)}{\partial \theta_k \partial \theta_l} - \frac{\partial^2 \log p(\theta)}{\partial \theta_k \partial \theta_l}$$

oeherl@gmail.com

Numerical Illustration - Alanine Dipeptide

- 22 atoms $\rightarrow \text{dim}(\mathbf{x}) = 66$.
- Implicit solvent.
- No pre-processing of data the data: x⁽ⁱ⁾ are the cartesian coordinates of all atoms in the system.

Auto-Encoding Variational Bayes

According [Kingma and Welling (2013)].

$$\bar{p}(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta}) p(\mathbf{z}|\boldsymbol{\theta}) d\mathbf{z}$$

Mapping $z \rightarrow x$ (decoder):

$$p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) = \mathcal{N}(\boldsymbol{\mu}(\mathbf{z}; \boldsymbol{\theta}), \ \boldsymbol{\sigma}^2 \boldsymbol{I})$$

With,

- $\cdot \mu(\mathsf{z}; \theta)$ output of fully connected decoding neural network.
- σ^2 independet of z due to [Mattei and Frellsen (2018)].

Auto-Encoding Variational Bayes

According [Kingma and Welling (2013)].

$$\bar{p}(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta}) p(\mathbf{z}|\boldsymbol{\theta}) d\mathbf{z}$$

Mapping $z \rightarrow x$ (decoder):

$$p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) = \mathcal{N}(\boldsymbol{\mu}(\mathbf{z}; \boldsymbol{\theta}), \ \boldsymbol{\sigma}^2 \boldsymbol{I})$$

With,

- $\cdot \mu(z; \theta)$ output of fully connected decoding neural network.
- σ^2 independet of z due to [Mattei and Frellsen (2018)].
- Proposed model does not pre-assume any physical insight.
- No a priori assumption or data treatment needed.

mschoeberl@gmail.com

Auto-Encoding Variational Bayes

$$\bar{p}(\mathbf{x}|\boldsymbol{\theta}) = \int p(\mathbf{x}|\mathbf{z},\boldsymbol{\theta}) p(\mathbf{z}|\boldsymbol{\theta}) d\mathbf{z}$$

We assume CVs are normal distributed according,

$$p(z) = \mathcal{N}(0, I)$$

- Here: $\dim(z) = 2$.
- Explore assigned meaning given $\dim(z) = 2$.

Auto-Encoding Variational Bayes

The approximate posterior is of the following form,

$$q(\mathbf{z}|\mathbf{x}, \boldsymbol{\phi}) = \mathcal{N}(\boldsymbol{\mu}(\mathbf{x}; \boldsymbol{\phi}), \boldsymbol{\sigma}(\mathbf{x})^2 \boldsymbol{I}).$$

With,

- $\mu(\mathbf{x}; \phi)$ and $\sigma^2(\mathbf{x}; \phi)$ described by a fully connected encoding network.
- · Last layers separate into $\mu(\mathbf{x}; \phi)$ and $\sigma^2(\mathbf{x}; \phi)$.

Numerical Illustration - Model

Figure 3: Schematic draft of the Bayesian variational autoencoder employed [Kingma and Welling (2013); Rezende et al. (2014)].

Training with N = 1500 datapoints, a batch size of M = 64 for 1500 epochs, dim(z) = 2

Figure 5: Lower bound.

Figure 4: CVs assigned to training data (latent representation of training data). Discovered CVs separate conformational modes well.

Prediction for
$$\{z|z_1 = [-4, 4], z_2 = 0\}$$
.

AEVB: Encoded representation of training data: $oldsymbol{\mu}(oldsymbol{x}^{(i)})$

Figure 6: CVs are highly correlated with different conformations.

Figure 7: Mean prediction for x with decoder $p_{\theta}(\mathbf{x}|\mathbf{z})$, given $\{\mathbf{z}|z_1 = [-4, 4], z_2 = 0\}$.

Prediction for $\{z|z_1 = [-4, 4], z_2 = 0\}$.

Figure 6: CVs are highly correlated with different conformations.

Figure 7: Mean prediction for x with decoder $p_{\theta}(\mathbf{x}|\mathbf{z})$, given $\{\mathbf{z}|z_1 = [-4, 4], z_2 = 0\}$.

Identified CVs show high correlation to the known optimal description, the dihedral angles (ϕ, ψ) .

Figure 8: Assessing dihedral angles ϕ given the CVs z.

Figure 9: Assessing dihedral angles ψ given the CVs z.

Numerical Illustration - Physical interpretation?

• $(Z_1, Z_2) \mapsto (\phi, \psi)$

Figure 10: Assessing dihedral angles (ϕ, ψ) given the CVs **z** at $z_2 = 0$.

Figure 11: Assessing dihedral angles (ϕ, ψ) given the CVs **z** at $z_1 = 0$.

Numerical Illustration - Model selection for neural networks

mschoeberl@gmail.com

Motivation

- Network structure highly individual. dim(θ) grows exponentially.
- What are the actually required parameters θ ?
- · Can one search across models?

Numerical Illustration - Model selection for neural networks

Motivation

- Network structure highly individual. dim(θ) grows exponentially.
- What are the actually required parameters θ ?
- · Can one search across models?

Sparsity-enforcing - Hierarchical priors (ARD, [MacKay 1994])

$$p(\boldsymbol{\theta}|\boldsymbol{\tau}) = \prod_{j} p(\boldsymbol{\theta}_{j}|\tau_{j})$$

$$\theta_{j} \sim \mathcal{N}(0, \tau_{j}^{-1})$$

$$\tau_{j} \sim Gamma(a_{0}, b_{0})$$

- Inner EM framework:
 - E-step: Estimate $\langle \tau_j \rangle_{p(\tau_j|\theta_j)} = \frac{a_0+1/2}{b_0+\theta_i^2/2}$
 - M-step: Additive component of the derivative of the log-likelihood: $\frac{\partial}{\partial \tau_{c,j}} = \langle \tau_j \rangle \theta_j$

mschoeberl@gmail.com

Numerical Illustration - Predictive CVs 🥀

- Predictions accounting for uncertainty in θ , with $\theta \sim p(\theta|X)$.
- Metropolis-within-Gibbs sampler [Mattei and Frellsen (2018)] corrects usage of approx. posterior $q_{\phi}(\mathbf{z}|\mathbf{x})$.

Numerical Illustration - Predictive CVs 👫

- Predictions accounting for uncertainty in θ , with $\theta \sim p(\theta|X)$.
- Metropolis-within-Gibbs sampler [Mattei and Frellsen (2018)] corrects usage of approx. posterior $q_{\phi}(\mathbf{z}|\mathbf{x})$.

10 8 4 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 Mg/A) meterence MAP 12%-99% quantile

Figure 12: Root-mean-square deviation.

Figure 13: Radius of gyration.

Figure 14: Ramachandran plot

ARD-prior identifies a parsimonious representation: 60% of the θ 's set to zero.

Numerical Illustration - Predictive CVs 👫

- Predictions accounting for uncertainty in θ , with $\theta \sim p(\theta|X)$.
- Metropolis-within-Gibbs sampler [Mattei and Frellsen (2018)] corrects usage of approx. posterior $q_{\phi}(\mathbf{z}|\mathbf{x})$.
- $N = \{526, 1527, 4004\}$

Adequate predictions with a dataset of N = 526. Low data instead of big data.

Summary

Conclusion

- CV discovery as *Bayesian* inference.
- Identified CVs reveal physics based on low data.
- *Physics learned from data*: discovered CVs are attached with physicochemical meaning.
- *Predictive* model obtained for property estimation and uncertainty quantification.

Outlook

- Sparse automatic determination of network structure.
- · VI on network parameters $heta, \phi$; Fully Bayesian approach.
- Utilize identified CVs for enhanced sampling methods (iteratively add data obtained from enhanced sampling).
- Addressing robustness and dependency of network [Mattei and Frellsen (2018)].

Questions?

Thank you!

References I

References

Banon.

- Matthew J. Beal and Zoubin Ghahramani. Variational bayesian learning of directed graphical models with hidden variables. *Bayesian Anal.*, 1(4):793–831, 12 2006. doi: 10.1214/06-BA126. URL https://doi.org/10.1214/06-BA126.
- Michele Ceriotti, Gareth A. Tribello, and Michele Parrinello. Simplifying the representation of complex free-energy landscapes using sketch-map. *Proceedings of the National Academy of Sciences*, 108(32):13023–13028, 2011. ISSN 0027-8424. doi: 10.1073/pnas.1108486108. URL
 - http://www.pnas.org/content/108/32/13023.

Maghesree Chakraborty, Chenliang Xu, and Andrew D. White. Encoding and selecting coarse-grain mapping operators with hierarchical graphs, 2018.

- R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner, and S. W. Zucker. Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps. *Proceedings of the National Academy of Sciences*, 102(21): 7426–7431, 2005. ISSN 0027-8424. doi: 10.1073/pnas.0500334102. URL http://www.pnas.org/content/102/21/7426.
- A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the em algorithm. *Journal of the Royal Statistical Society. Series B (Methodological)*, 39(1):1–38, 1977. ISSN 00359246. URL http://www.jstor.org/stable/2984875.

Karl Pearson F.R.S. Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11):559–572, 1901. doi: 10.1080/14786440109462720. URL https://doi.org/10.1080/14786440109462720. PCA beginnings.

- H. Hotelling. Analysis of a complex of statistical variables into principal components. *J. Educ. Psych.*, 24, 1933.
- Michael I. Jordan, editor. *Learning in Graphical Models*. MIT Press, Cambridge, MA, USA, 1999. ISBN 0-262-60032-3.
- Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2013.
- Pierre-Alexandre Mattei and Jes Frellsen. Leveraging the exact likelihood of deep latent variable models, 2018.

References IV

Boaz Nadler, Stéphane Lafon, Ronald R. Coifman, and Ioannis G. Kevrekidis. Diffusion maps, spectral clustering and reaction coordinates of dynamical systems. Applied and Computational Harmonic Analysis, 21(1):113 – 127, 2006. ISSN 1063-5203. doi: https://doi.org/10.1016/j.acha.2005.07.004. URL http://www.sciencedirect.com/science/article/pii/ S1063520306000534. Special Issue: Diffusion Maps and Wavelets.

Frank Noé and Cecilia Clementi. Kinetic distance and kinetic maps from molecular dynamics simulation. *Journal of Chemical Theory and Computation*, 11(10):5002–5011, 2015. doi:

10.1021/acs.jctc.5b00553. URL

https://doi.org/10.1021/acs.jctc.5b00553. PMID: 26574285.

Frank Noé, Ralf Banisch, and Cecilia Clementi. Commute maps: Separating slowly mixing molecular configurations for kinetic modeling. *Journal of Chemical Theory and Computation*, 12(11): 5620–5630, 2016. doi: 10.1021/acs.jctc.6b00762. URL https://doi.org/10.1021/acs.jctc.6b00762. PMID: 27696838.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approximate inference in deep generative models. In *Proceedings of the 31th International Conference on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014*, pages 1278–1286, 2014. URL http: //jmlr.org/proceedings/papers/v32/rezende14.html. Mary A. Rohrdanz, Wenwei Zheng, and Cecilia Clementi. Discovering mountain passes via torchlight: Methods for the definition of reaction coordinates and pathways in complex macromolecular reactions. Annual Review of Physical Chemistry, 64(1):295–316, 2013. doi: 10.1146/annurev-physchem-040412-110006. URL https: //doi.org/10.1146/annurev-physchem-040412-110006. PMID: 23298245.

Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. A global geometric framework for nonlinear dimensionality reduction. *Science*, 290(5500):2319–2323, 2000. ISSN 0036-8075. doi: 10.1126/science.290.5500.2319. URL http: //science.sciencemag.org/content/290/5500/2319. John M. Troyer and Fred E. Cohen. Protein conformational landscapes: Energy minimization and clustering of a long molecular dynamics trajectory. Proteins: Structure, Function, and Bioinformatics, 23(1):97–110. doi: 10.1002/prot.340230111. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/ prot.340230111.