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“What I cannot create, I do not understand.”

Richard Feynman (1918 – 1988)





Abstract

Advances in biomolecular processes, materials science, and nanotechnology are hin-
dered because the scales that are used in atomistic systems are not parallel. Resolv-
ing local oscillations in robust all-atom molecular dynamics simulations requires
time steps in the order of femtoseconds (1.0× 10−15 s), while relevant biochemical
processes take place on timescales that exceed several milliseconds (1.0× 10−3 s).

This discrepancy – of more than 12 orders of magnitude between the simula-
tion time horizons and the required molecular dynamics time-step resolution (fem-
toseconds) – results in a prohibitive number of simulation steps. Even so, prevalent
spatiotemporal limitations can be overcome by using simulation tools that overarch
multiple scales.

In the context of equilibrium statistical mechanics, this project involved develop-
ing data-driven and variational coarse-graining approaches based on an atomistic
scale. Ultimately, we offer a novel approach to mapping between scales. While
existing methodologies rely on many-to-one, fine-to-coarse mappings (e.g., defined
by summarizing atoms to macromolecules), we introduced a probabilistic coarse-to-
fine map. This approach corresponds to a directed probabilistic graphical model,
wherein coarse-grained variables are implicitly defined by the introduced proba-
bilistic coarse-to-fine map. Hence, the coarse-grained variables, which are latent
variables, serve as generators of fully atomistic representations.

Essentially, we reformulated the approaches to a likelihood-based maximization
problem that is embedded in a consistent Bayesian framework. This approach al-
lowed for the reconstruction of a fully atomistic scale, which enabled estimations of
macroscopic observables that are governed by fine-scale interdependencies. Further,
this allowed for the determination of posterior distributions of model parameters,
which express uncertainties due to limited training data. The prevalent uncertain-
ties were propagated to a predictive posterior distribution over relevant quantities.
More broadly, the predictive distributions reflect the credibility of the coarse-grained
model and quantify uncertainties in the available data. In the end, we were left to
either focus exclusively on low amounts of training data (50–1000) or completely
circumvent the production of training data by adopting variational approaches.

In addition to developing predictive machine-learned coarse-graining
frameworks, we sought to discover physical insights on the absence of any system-
dependent knowledge. One component of this work focuses on obtaining sparse,
physically interpretable solutions for the interactions of coarse-grained variables.
Another seeks to reveal parsimonious lower-dimensional representations through
expediting the discovery of collective variables in the reference system.

Overall, the sparse learning methods provide robust and interpretable models
that can be readily generalized for further unsupervised learning problems. The
framework’s capabilities are demonstrated through the coarse-graining of physically-
relevant reference systems (i.e., the Ising model, SPC/E water, alanine dipeptide,
and ALA-15).





Zusammenfassung

Der antiparallele Verlauf inhärenter Zeit- und Längenskalen atomistischer Systeme
beeinträchtigt die Erforschung von biomolekularen Prozessen und Fortschritten in
Materialwissenschaft und Nanotechnologie. Während biochemische Prozesse einen
Zeithorizont von einigen Millisekunden (1.0× 10−3 s) einnehmen, benötigen Mole-
kulardynamik-Simulationen zur Auflösung lokaler Oszillationen einen Zeitschritt
von Femtosekunden (1.0× 10−15 s).

Eine Diskrepanz von mehr als zwölf Größenordnungen zwischen relevanten
Simulationszeithorizonten und der erforderlichen Zeitschrittauflösung führt zu ei-
ner unerschwinglichen Anzahl von Simulationsschritten. Simulationstools, die meh-
rere Skalen überbrücken, können jedoch weit verbreitete raumzeitliche Einschrän-
kungen effizient überwinden.

Diese Arbeit adressiert die Entwicklung datengetriebener sowie variationeller
Multiskalenmodelle, basierend auf sich im thermodynamischen Gleichgewicht be-
findenden atomistischen Systemen. Die grundlegende Neuheit des entwickelten
Ansatzes liegt in einer neuen Perspektive der Verknüpfung von involvierten Skalen.
Existierende Methoden basieren auf einer Vorschrift, die ausgehend von einer atom-
istischen Beschreibung auf eine vergröberte, dimensionsreduzierte Beschreibung
schließt (Fein-zu-grob-Ansatz). Dies geschieht beispielsweise durch das Zusam-
menfassen mehrerer Atome zu Makromolekülen. Wir verfolgen hingegen in dieser
Arbeit eine entgegengesetzte Perspektive bezüglich einer mathematischen Verknüp-
fung involvierter Skalen. Wir führen ein probabilistisches Mapping ein, das ausge-
hend von einer vergröberten Darstellung (Makromoleküle) auf die ursprüngliche
atomistische Beschreibung schließen lässt (Grob-zu-fein-Ansatz). Die entwickelte
Methode kann als gerichtetes probabilistisches grafisches Modell interpretiert wer-
den, wobei das eingeführte Grob-zu-fein-Mapping die grobkörnige Beschreibung
impliziert. Koordinaten der grobkörnigen Beschreibung sind latente Variablen und
dienen zur Generierung der feinskaligen atomistischen Beschreibung.

Die im Kontext atomistischer Systeme entwickelten Dimensionsreduktionsan-
sätze haben eine informationstheoretische Untermauerung. Wir betrachten diese
Ansätze aus einem wahrscheinlichkeitstheoretischen Blickwinkel und entwickeln
ein konsistentes bayessches Rahmenwerk. Die entwickelte Methode ermöglicht eine
probabilistische Rekonstruktion der atomistischen Beschreibung, ausgehend von der
grobkörnigen Darstellung. Die atomistische Auflösung erlaubt wiederum eine
Vorhersage makroskopischer Eigenschaften, die von gegenseitigen feinskaligen Ab-
hängigkeiten bestimmt sind. Darüber hinaus gestattet ein bayesscher Blickwinkel



die Bestimmung von A-posteriori-Wahrscheinlichkeitsverteilungen der Modellpa-
rameter. Diese Verteilungen quantifizieren die Unsicherheit involvierter Modellpa-
rameter aufgrund begrenzter Trainingsdaten. Wir propagieren Parameterunsicher-
heiten in Bezug auf eine prädiktive Wahrscheinlichkeitsverteilung relevanter atom-
istischer Eigenschaften und berechnen Glaubwürdigkeitsintervalle, die den Erken-
ntniswert, basierend auf einer limitierten Datenmenge, quantifizieren. Wir entwick-
eln in dieser Arbeit robuste maschinelle Lernverfahren, die trotz geringer Daten-
mengen (50–1.000) einen zuverlässigen Erkenntnisgewinn ermöglichen.

Mittels entwickelter prädiktiver und maschinell gelernter Multiskalenmodelle
decken wir physikalisch relevante Einblicke atomistischer Komplexe ohne system-
spezifisches Vorwissen auf. Ein Teil dieser Arbeit forciert physikalisch interpretier-
bare makromolekulare Interaktionspotentiale, die mit möglichst wenigen Modell-
parametern prädiktiv sind. Darüber hinaus zeigen wir Methoden zur Identifika-
tion physikalisch essentieller Koordinaten, die zur beschleunigten Exploration kom-
plexer atomistischer Systeme beitragen können.

Entwickelte maschinelle Lernalgorithmen führen zu robusten und interpretier-
baren Modellen, die im Allgemeinen für weitere Problemstellungen leicht verallge-
meinert werden können. Wir demonstrieren die Leistungsfähigkeit des entwickelten
Ansatzes anhand physikalisch relevanter Referenzsysteme (d. h. das Ising-Modell,
SPC/E-Wassermodell, Alanin-Dipeptid und ALA-15).
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Chapter 1

Introduction

In this thesis, we focus on the development of methodologies for overcoming the
spatial- and temporal-scale limitations inherent in direct atomistic simulation tech-
niques while still being able to reason about the fully resolved scale and thus, enable
the estimation of properties that depend on the fine resolution. We propose coarse-
graining (CG) approaches to learning a parsimonious lower-dimensional represen-
tation without assuming system-specific knowledge, which can still reveal physical
insights. Further, we develop methodologies favoring sparse models that facilitate
robust machine learning in the low-data regime. The approaches presented follow
a fully Bayesian framework to produce probabilistic estimates that account for epis-
temic uncertainty.

This chapter outlines the motivation for covering an extended range of spatial
and temporal scales compared to brute-force molecular dynamics (MD) simulations.
In this work, the atomistic resolution depicts the scale of origin and we focus on iden-
tifying predictive CG descriptions. The meaning of the term “predictive” is specified
in this introductory chapter along with an overview of various simulation techni-
ques for scales relevant in modeling materials. We summarize existing methods and
point out their advantages and limitations.

While writing this work, we have found several different approaches for extend-
ing the spatial and temporal scales based on the atomistic scale. We categorize the
methodologies as (i) data-driven approaches, (ii) enhanced sampling approaches,
and (iii) variational approaches, which we all introduce in this work. However, the
focus is on the development of predictive data-driven CG methodologies that un-
veil physical insights with limited data. Two minor sections address collective vari-
able discovery for enhanced sampling and strategies that fully embed the available
physics without producing any atomistic data beforehand.

We provide an outline of the thesis at the end of this introductory chapter.

1.1 Background and context

The macroscopic properties of materials or biochemical systems are evoked by their
microscopic behavior [1–3]. Microscopic insights are, thus, essential for understand-
ing the overarching physicochemical processes in multiple interdigitating scientific
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disciplines. Nowadays, atomistic simulations are well supported and routinely ap-
plied in materials science [4, 5], chemical physics, biochemistry, biophysics, and
pharmacology [6–9].

The foundations of MD simulations were developed by Adler and Wainwright
[10, 11] in the 1950s when they were studying the collisions of 32 hard spheres. Later,
in the 1960s, Rahman [12] carried out an MD simulation of 864 argon atoms in the
liquid phase to study structural correlations using one of the first high-performance
computers, the IBM 704, achieving 40 kFLOPS. Continuing progress in computer
architecture and processor technology has lead to compute farms with up to ap-
proximately 200 000 TFLOPS [13]. Despite the availability of petascale computing
resources utilizing GPUs and extensively parallelized implementations, the discrep-
ancy between the practically accessible spatial and temporal scales compared to
those relevant for understanding biochemical processes remains significant.

1.1.1 Limitations of all-atom MD simulations

Robust all-atom MD simulations require time steps of the order of femtoseconds
(1.0× 10−15 s) for resolving local oscillations, i.e., bonded interactions [14, 15]. Un-
like the time steps in MD simulations, interesting biochemical processes, e.g., con-
formational changes of proteins (relevant for understanding diseases like HIV [16])
and protein-folding processes [17–20], take place on timescales exceeding several
milliseconds (1.0× 10−3 s). The discrepancy of more than 12 orders of magnitude be-
tween relevant simulation periods (milliseconds) and the required MD time-step res-
olution (femtoseconds) results in a prohibitive number of simulation steps of more
than one trillion [20].

However, simulating events that span milliseconds is key to understanding dis-
eases due to protein misfolding [21], such as type-2 diabetes [22, 23], Alzheimer’s
[24, 25], and Parkinson’s [26, 27]. Gaining an extensive microscopic understanding
of the mechanisms causing such diseases could tremendously accelerate the devel-
opment of effective medications and treatments [28]. The significance of reducing
the computational cost for research into inherently large biological systems is em-
phasized in Figure 1.1, which compares the required wall clock time with the phys-
ical simulation time. The figure relies on findings in [29]. The antiparallel nature
of scales is not only hampering the exploration of biomolecular processes but also
progress in materials science and nanotechnology [30–32]. MD simulations are an
effective way to conduct in silico experiments in the development of novel materials
[33, 34], e.g., for investigating crack propagation in complex material compounds
[35, 36]. Physical timescales that exceed the practically available computational re-
sources are, likewise, prevalent in the simulation of alloy-hardening processes [37].
Thus, by overcoming the spatial limitations, atomistic and macroscopic simulations
could become a better computational microscope [20, 38], enabling the rapid explo-
ration of material properties under various mechanical and thermodynamic condi-
tions.
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FIGURE 1.1: Approximate computation time (wall clock time) versus
the actual physical simulation time indicated on the timeline for a
typical protein–protein system solvated in explicit water. The shortest
events, i.e., bonded interactions, require femtosecond time steps that
are equivalent to milliseconds of physical simulation time. Figure

inspired by [29].

Algorithmic advances and approximations, like Ewald summation [39] and
thresholding the influence of interactions up to a certain cutoff radius [14], can re-
duce the computational cost per step from O(n2) to O(n log n), while leaving the
number of steps required unchanged. Here, n is the number of atoms considered
in the system. The increasing availability of computational resources and recent ad-
vances in utilizing GPUs accompanied by extensively parallelized atomistic simula-
tion algorithms [40–44] foster simulations by decomposing the simulation domain
into local regions distributed to multiple processors. Computations are performed
spatially in parallel [45], not parallel in time. The parallel in time integration of or-
dinary differential equations (ODEs) is an active area of research. For an overview,
see [46, 47]. Parallel time-integration involves the reformulation as an optimization
problem over several time steps. The main focus has been on expediting MD simu-
lations in condensed matter physics.

Beyond the algorithmic progress, are hardware improvements for CPUs and
GPUs mostly driven by increasing transistor densities. Increased densities are ben-
eficial for improving performance for multiple parallel tasks, while the clock rate
stagnates, where increasing clock rates would be useful for MD simulations [20, 48].

The computational challenges due to the broad range of scales involved in bio-
chemical and solid-state systems have led to the development of advanced simula-
tion techniques, hierarchically targeting different scales of interest. At the bottom
of the hierarchy concerning different simulation approaches, depicted in Figure 1.2,
strategies resolve quantum mechanical effects and electron structure to provide an
accurate but computationally intensive description of interactions between atoms
by solving the Schrödinger equation. The primary domain of ab initio methods are
systems with a few atoms over a timescale of picoseconds [49].

Unlike ab initio methods, extended spatial and temporal scales are accessible
with atomistic descriptions, such as MD simulations, which sought to solve ODEs
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FIGURE 1.2: The figure shows practical simulation techniques for
multiple temporal and spatial scales. However, there is a fuzzy tran-

sition between scales. Figure is inspired by [54, 55].

based on classical mechanics and empirical force fields. By ignoring the atomistic de-
tails, CG models summarize the essential collective particle motion [50, 51]. Macro-
scopic continuum approaches at the top of the hierarchy in Figure 1.2 capture scales
up to hours and meters, depending on the spatial and temporal discretization and
model complexity, in terms of higher-order test or shape functions [52, 53].

Before focusing on the reference simulation techniques and MD simulations used
in this work, and their limitations, we provide a brief overview of different simula-
tion resolutions with potential application domains in the multiscale paradigm.

1.1.2 Computational methods in materials modeling

This section provides a brief overview of simulation techniques for specific applica-
tion domains with regards to spatial and temporal scales.

Density functional theory

Ab initio methods considering electron structure are not directly the focus of this
work; however, they are useful tools for estimating the atomistic force fields required
for MD simulations. We provide a brief introduction to one of the most popular
approaches for obtaining approximate solutions, which is used instead of solving
the Schrödinger equation [56].
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Density functional theory (DFT) goes back to the work of Thomas [57] and Fermi
[58] in the 1920s, who independently proposed an expression for the electron den-
sity in an external field. Hohenberg and Kohn [59, 60] proved that the ground-state
energy of an atomistic system is fully defined by its ground-state electron density,
which uniquely minimizes the energy functional. Refs. [61] and [62] provide a com-
prehensive overview of the development of DFT methods and their various charac-
teristics.

The computational efficiency of the density functional approach is relatively
moderate compared to other simulation methods that resolve quantum effects. DFT
simulations achieve spatial and temporal scales of up to a few nanometers
(1.0× 10−9 m) and picoseconds (1.0× 10−12 s) [49, 63, 64]. Although ab initio calcu-
lations are currently not appropriate for addressing scales relevant to biomolecular
systems, they are crucial, along with experimental data, for estimating the parame-
ters of a force field [65, 66]. The force fields considered in MD simulations do not ac-
tively account for the electron density but implicitly contain such information from
DFT and provide a description for overarching biochemical processes [67, 68]. See
[69] for an overview of various DFT approaches and their application in chemistry.

An active area of research is the development of ab initio MD approaches, which
employ forces evaluated with DFT calculations instead of relying on empirical force
fields that integrate out the electronic structure. An ab initio MD approach was first
proposed by Car and Parinello [70–73] for simulations of dense metallic systems at
scales inaccessible by pure DFT calculations [74, 75]. Ab initio MD approaches can
resolve bond breaking and forming processes by resolving the electron structure but
at the cost of restricted spatial and temporal scales.

Attempts to overcome scale limitations with quantum accuracy initiated an ac-
tive research avenue on learning surrogate models for DFT calculations. Novel ap-
proaches, e.g., machine-learned Gaussian approximations [76–78] and neural net-
works [79] trained on transferable effective force fields based on DFT data, have
facilitated MD simulations at almost DFT accuracy. Learned potentials are compu-
tationally efficient to evaluate compared to performing full DFT simulations, as done
in the Car–Parinello MD approach. However, using these potentials is unavoidably
accompanied by decreasing accuracy. Instead of simulations, other approaches use
flexible machine-learned models based on large DFT data sets to predict molecular
properties directly [80–84]. More recently, a novel research direction, empowered
by the rise of machine learning, aims to predict molecular properties based solely on
their chemical structure [85]. Though the model training relies on properties of refer-
ence structures, it provides explorative features for any molecular graph by learning
the molecular structure. For this purpose, Kondor and Anderson developed covari-
ant compositional networks [86], which contain information about atomistic inter-
actions and capture the multiscale nature of molecular graphs using a hierarchy of
subgraphs.
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Molecular dynamics

Resolving the electronic structure becomes cumbersome for large systems [87]. For
biochemical processes, detailed electron density information is, in many cases, not
essential and can be implicitly incorporated into an atomistic description. Atomistic
MD simulations compute the dynamic evolution based on classical mechanics of po-
sitions and velocities, in which their nuclei represent the system’s atoms. The atoms
interact via a force field or interaction potential, which usually decompose into sim-
ple parametrized functions. The different components model physically motivated
multi-body contributions from bonded and non-bonded interactions [14, 88]. Al-
though ab initio quantum mechanical calculations are not appropriate for address-
ing scales relevant to biochemical processes, they are crucial, along with experimen-
tal data, for estimating the parametrization of a force field [65, 66, 89]. Given a sys-
tem’s specifications, such as geometry, boundary conditions, and the force field, its
equations of motion based on classical mechanics can be integrated stepwise with
numerical methods [90]. Symplectic numerical schemes, as required in MD, must
conserve the phase-space volume. Time reversibility and energy conservation are
relevant criteria if time integration methods are to give trustworthy trajectories [14].
The standard choice is the Velocity-Verlet algorithm, which provides up to second
order in time accuracy [91]. In general, analytic solutions are not available for the
N-body problems addressed.

Without requiring any additional modifications of the integration scheme, the
MD trajectories obtained, follow the microcanonical (NVE) ensemble. However,
many in silico experiments require different thermodynamic conditions. Thermo-
stats can augment the time integration such that the particle dynamics follow the
desired ensemble. For example, the earliest and simplest approach adjusts the sys-
tem temperature by rescaling the particle velocities (strong coupling) [92]. Other
methodologies rely on a coupled random force and constant friction on the particles
to satisfy the fluctuation–dissipation theorem [93]. The findings of Nosé and Hoover
[94, 95] led to a deterministic formulation based on augmented equations of motion
with an additional friction degree of freedom associated with a fictitious mass [96]
for the canonical ensemble. These approaches can be transformed for an isothermal
isobaric (NPT) ensemble.

The anticipated added value of atomistic MD simulations depends on the quality
of the force fields utilized [97, 98], which have reached an acceptable level of accu-
racy for representing, e.g., protein-folding processes. We refer to [99] for a survey
comparing the predictive capabilities of various force fields.

We elaborate more on MD simulations that depict the reference simulator used
in this work in the methodology part.
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FIGURE 1.3: Typical mapping from atoms to CG variables. Multiple
atoms form one CG bead, depicted as semi-transparent spheres. We

render all atomistic representations in this work with VMD [112].

Coarse-graining methods

Ab initio methods are applied for simulation timescales spanning a few picosec-
onds, whereas MD simulations reach hundreds of nanoseconds. However, the sim-
ulation of biochemical processes from classical first-principles methods remains pro-
hibitively costly for millisecond timescales, even when considering current and fore-
seeable advances in high-performance computing [50, 100]. CG approaches aim to
overcome the scale limitations of first-principles methods by integrating out atom-
istic detail [101, 102], while still being able to represent essential system phenomena,
like the diffusion of polymer melt [103, 104] and conformational changes of proteins
[105–108], which occur over long timescales. CG representations are sought to con-
tain essential atomistic features while omitting less relevant atomistic fluctuations.
Thus, a CG mapping defines which fine-grained (FG) degrees of freedom are sum-
marized and map to CG degrees of freedom, which are also termed CG variables
[109]. These CG variables should capture the most salient physical features of the
FG simulations. One possible strategy for obtaining a CG mapping is motivated
by a molecule structure that summarizes several atoms and treats them as a single
interaction site or CG particle in the CG description [110, 111], e.g., as shown in
Figure 1.3.

As well as the CG mapping, a second crucial component for CG approaches is
the potential energy surface, which is a function depending on the CG variables.
The CG potential energy describes the interactions between CG variables or sites,
and thus, the CG interaction forces. For a given CG mapping, there is a many-body
potential of mean force (PMF) [113, 114], which yields an equivalent distribution of
CG system states as the reference all-atom distribution represented in the CG coor-
dinates. For relevant systems, the direct calculation of the PMF is computationally
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impractical. Remedy provides the reformulation of identifying the PMF as an opti-
mization problem [115]. Different objectives are motivated by bottom-up and top-
down CG strategies. Bottom-up approaches rely on an FG atomistic reference simu-
lation, which provides highly resolved information from classical first-principles or
structural correlations derived from the reference simulation. In contrast, top-down
approaches aim for reproducing thermodynamic observables obtained from in sil-
ico or in situ experiments. Section 1.2 discusses the advantages and disadvantages
of the methods. Additionally, there is a concise review by Noid [116].

The reduced number of degrees of freedom in CG models (which lowers the com-
putational effort for the calculation of forces, the time integration, and Monte Carlo
sampling) is an essential reason for the efficiency gain compared to all-atom simu-
lations. A further computational speed-up is due to the smoother potential energy
surface prevalent in CG models compared to the highly resolved atomistic counter-
parts. High-frequency bonds, e.g., hydrogen bonds, are integrated out and mod-
eled implicitly by a smoothed CG potential energy surface [117]. Smoother potential
energy surfaces facilitate more substantial time steps (in MD simulations) or more
significant trail movements (in Monte Carlo simulations). However, having fewer
particles in a CG model results in reduced friction in the system, which changes
the dynamics [118–120]. In this work, we are interested in systems in equilibrium
and corresponding observables, where the enhanced diffusion due to the smoothed
potential energy surface is beneficial and leads to an accelerated exploration of the
phase space [100, 121].

Many CG methodologies require the learning of process-targeted CG models.
Training these models relies upon, either long FG atomistic trajectories or reference
thermodynamic or structural observables. After successfully training the CG model
based on some objective, the model is supposed to estimate observables on extended
time-horizons. Next to CG models, enhanced sampling approaches are accelerating
the efficient exploration of scales. These are not in the focus of this work, but we
develop among this work an essential component to enhanced sampling methods,
which is the identification of collective variables [122].

Collective variables and enhanced sampling

Many research questions in biochemistry are related to conformational changes and
protein folding of biological macromolecules [123]. However, biomolecules are
known for a rugged free-energy surface with several local minima separated by sub-
stantial barriers [124]. Simulations of such molecules with high free-energy barriers
tend to spend much computational effort on exploring one minimum of the free-
energy surface without efficiently exploring other relevant minima [125, 126]. Deep
basins hamper the exploration of the configurational space [127, 128], which could
result in a biased trajectory that does not reflect the actual all-atom density [129–131].
Enhanced sampling methods sought to overcome this issue by enabling a more effi-
cient exploration of the configurational space.
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One category of enhanced sampling relies on a variety of combinations of tem-
pering schemes, utilizing parallel replicas and reweighting. The post-processing
step of reweighting to adjust sampling based on the correct target temperature is es-
sential. Methods such as parallel tempering, replica-exchange MD [132, 133], multi-
canonical sampling [134], and enveloping distribution sampling [135] are only a few
out of the many strategies.

Other enhanced sampling methods utilize collective variables for biasing the po-
tential energy to evoke favorable circumstances for escaping the current conforma-
tion and its corresponding local minimum in the free-energy surface [124]. Several
enhanced sampling methods use this concept, e.g., umbrella sampling [136–138],
potential smoothing [139], conformational flooding [140], adaptive biasing force me-
thod [141], metadynamics [124, 142], and variationally enhanced sampling [143].

Since enhanced sampling is not the main topic of this thesis, refer to the review
articles for more details [122, 131, 144].

1.2 Related work and motivation

This section reviews existing CG approaches and discusses their advantages and
shortcomings.

1.2.1 Coarse-graining methods

Top-down CG approaches aim to reproduce thermodynamic reference observables
and large-scale properties obtained from experimental measurements. Since there
is no underlying atomistic model, low-resolution top-down CG models, in general,
are not able to capture the essential high-resolution physics. The modeler’s physi-
cal intuition often motivates the parametrization of a top-down CG potential, and
parameters are optimized to match large-scale properties. In many cases, there is
no unique set of parameters where different CG physics or CG interactions can lead
to the same thermodynamic properties [145, 146]. However, top-down models suc-
cessfully delivered CG models in [100, 147]. Since we are interested in CG models
providing interpretable physical insight for a complex atomistic all-atom model, we
focus on approaches with connections to an underlying FG model.

Bottom-up CG approaches count on a fully atomistic simulation with a reference
trajectory, forces, and structural correlations (e.g., radial distribution functions). In-
stead of reasoning from a single thermodynamic observable, as is common in top-
down approaches, bottom-up CG approaches use a structured procedure to identify
low-resolution features from high-resolution reference simulations, consistent with
statistical mechanics [116]. Note that for bottom-up CG approaches to capture the
information contained in reference simulations, they require sufficiently long refer-
ence simulations. Enhanced sampling methods [122] are efficient for exploring the
free-energy landscape extensively. Existing bottom-up approaches require the def-
inition of a fine-to-coarse mapping for connecting the all-atom scale with the CG
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representation and a (parametrized) interaction potential expressed in the depen-
dency of CG coordinates. The many-to-one mapping needs to be defined a priori
and is usually motivated by existing physical insights. Various methods are after
that employed to learn effective low-resolution interactions.

The following discusses structural and variational bottom-up CG approaches
and the role of the fine-to-coarse mapping.

Correlation function approaches

Some bottom-up CG methodologies focus on reproducing structural observables,
such as pairwise distribution functions, higher-order correlations, and angular and
dihedral distribution functions defined by three or four atoms. The reference struc-
tural distribution functions utilize a reference all-atom simulation mapped onto the
coarse scale. Reference structural observables must be defined on the same coarse-
scale for consistency, since there is, as yet, no reverse coarse-to-fine mapping in CG
methodologies. Examples of structural bottom-up CG approaches are inverse Monte
Carlo (IMC) [148] and (iterative) Boltzmann inversion (IBI) [114, 149].

IMC methods, also known as reverse Monte Carlo methods [148, 150, 151], rely
on renormalization group Monte Carlo methods that were initially developed to
simulate CG phase transitions of spin systems [152, 153]. The approach is iterative
and estimates the linear response of all pairwise radial distribution functions based
on a change in the CG pair potential for a given interaction type at a specified pair
distance between CG sites. This leads to a susceptibility matrix of the pairwise distri-
butions with respect to the pairwise interaction potential. The susceptibility equals
the covariance of pairwise distribution functions multiplied by the inverse temper-
ature. Coupling both expressions for the susceptibility matrix results in a linear
system of equations that can be solved to obtain the CG potential energy. The sus-
ceptibility matrix is proportional to the covariance of pairwise distribution functions
and, by definition, always positive definite. Thus, an IMC approach converges to a
global optimum and accounts for cross-correlations between pairwise distributions
when updating the interaction potential. The original approach employs a CG inter-
action potential represented as a piecewise constant function with a discretization
of 0.5 Å, which is restrictive, especially when considering the detailed resolution of
repulsive interactions. An extension providing more flexibility for the CG potential
utilizes a linear combination of radial basis functions [154]. However, the basis func-
tions have fixed support. Expressivity needs to be maintained by providing various
kernels, which leads to an optimization problem of increased complexity. A formu-
lation of renormalization group Monte Carlo [153] focused on CG representations of
the Ising model [155, 156] with further extensions and amendments for identifying
CG models for DNA and other large biomolecules [157, 158].

Boltzmann inversion (BI) was initially proposed in [149] and is, like IMC, a struc-
tural bottom-up CG approach. BI assumes that CG structural observables, such as
two-body distribution functions, are uncorrelated, where ξ denotes a CG variable,



1.2. Related work and motivation 11

e.g., corresponding to the distance between CG particles. Given a two-body correla-
tion function, [149] assumes that the observed distribution relies on the correspond-
ing Boltzmann factor and that the CG interaction potential Uc(ξ) is in the exponent:
p(ξ) ∝ exp (−βUc(ξ)). The inversion for obtaining the CG potential is

Uc(ξ) = −
1
β

log
p(ξ)
J(ξ)

, (1.1)

where the Jacobian J(ξ) accounts for representations not using Cartesian coordi-
nates. BI focuses on pairwise interactions and CG variables that depend on only a
single coordinate to enable direct inversion. An explicit limitation of this approach
is the assumption of independent pairwise distribution functions between CG par-
ticles, which is invalid in systems of practical interest [159]. The assumption can be
justified, however, for all types of (stiff) bonded interactions but provides limited
capabilities in identifying non-bonded CG interactions [149, 160]. Iterative methods,
like IMC approaches or the following iterative version of BI, provide better descrip-
tions of correlations between different pairwise interactions by accounting for them
implicitly in an iterative procedure that balances the contributions [161, 162].

Instead of directly using inversion to determine the CG potential, IBI [114] pro-
poses an iterative updating procedure. The initial guess of the potential employs
direct Boltzmann inversion, which is a reasonable starting point. Differences be-
tween the reference atomistic observable pre f (ξ) and the observable obtained from a
CG simulation utilizing the current CG potential Ui

c(ξ) at iteration i, pi
c(ξ), motivate

the per iteration update:

∆Ui
c(ξ) =

1
β

log
pi

c(ξ)

pre f (ξ)
. (1.2)

Equation 1.2 adjusts the CG potential at ξ if pi
c(ξ) < pre f (ξ) such that U(ξ) becomes

more attractive at ξ and vice versa according to the update rule:

U(i+1)
c (ξ) = U(i)

c (r) + α∆U(i)
c (ξ). (1.3)

The original formulation suggests changing the CG potential for one type of inter-
action (e.g., bonded interactions) while keeping it fixed for the others [114]. The
optimization should start from the least correlated and thus, stiffest pairwise inter-
actions, in the order: bonded, angular, dihedral, and non-bonded interactions. The
iterative approach tries to account for cross-correlations, which, however, hampers
the convergence [163].

IBI and IMC methods focus on reproducing certain structural observables for
a specific thermodynamic state. More recent enhancements generalize CG models
based on IBI by considering reference observables from different thermodynamic
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states. However, they still focus on structural observables [164]. CG models ob-
tained from IBI and IMC approaches tend to lack accuracy in matching thermody-
namic properties. Thermodynamic constraints, introduced via Kirkwood–Buff in-
tegrals [165, 166], provide a potential avenue for addressing the mismatch in the
thermodynamic properties as presented in [167, 168]. Adding thermodynamic con-
straints [169], however, is unavoidably accompanied by a lower accuracy in repro-
ducing pairwise distribution functions [170]. Refer to [171] for a comprehensive
review of IBI methods with thermodynamic correction terms. Structural CG ap-
proaches rely on pairwise distribution functions. Although including three-body
correlations from the atomistic reference and providing three-body terms in the CG
potential is feasible, however, results in poor convergence while adding a tedious
additional computational cost [172]. Moreover suffers the accuracy of estimates con-
cerning three-body correlations under prevalent noise.

An IMC approach requires the calculation of cross-correlations between different
pairwise interactions, which improves the accuracy of the CG potentials obtained.
However, computing correlations requires, in general, more extended CG simula-
tions per IMC iteration to balance noise-afflicted estimates and to achieve reason-
able convergence. By utilizing noisy estimates, using correlations results in IMC
approaches having accelerated convergence compared to IBI approaches for pair-
wise interactions. Theoretically, both IMC and IBI frameworks can accommodate the
identification of higher-order interaction terms in the CG potential energy. However,
these frameworks are impractical for systems of interest [114, 148, 173, 174].

CG models obtained from the IMC, BI, and IBI approaches aim to reproduce pair-
wise structural observables, thus seek to reproduce an approximate pairwise PMF.
Different CG models can lead to the same observables [116, 170, 175]. However, such
CG models may not reveal or encode higher-order physicochemical insight.

Variational approaches

In approximating the many-body PMF, CG frameworks, such as the IBI and IMC,
only use a fraction (expressed by structural properties) of the information contained
in atomistic reference simulations. Objectives matching certain structural distribu-
tion functions can approximate only an effective PMF expressed by the distribution
functions provided. These are mostly pairwise distributions. Even by adding flex-
ibility through adding higher-order interactions, they can still access only a limited
portion of the information contained in the atomistic reference trajectory, expressed
by the selected pairwise correlation functions.

Instead of relying on a particular selection of structural correlation functions up
to a specified order, variational CG approaches have access to the full information
resolved by atomistic reference simulations in the form of the trajectory. In the limit,
variational CG approaches allow the identification of the many-body PMF. As well
as defining a mapping from fine to coarse coordinates, a characteristic functional
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defining an optimization objective is required for such methods. This objective re-
sults in an optimization problem that is a rigorous approach for systematically learn-
ing the parametrization of CG potentials, not only for pairwise contributions but
flexible parametric forms, including contributions up to the desired interaction or-
der [116].

Multiscale coarse-graining (MS-CG) [109, 176, 177] and the relative entropy
framework [178–181] are the most prominent representatives of variational CG me-
thodologies.

Multiscale CG approaches These are an extension of the original force-matching
approach (FM-CG) first introduced in [182]. The approaches endeavor matching
forces of atomistic reference simulations projected onto the coarse-scale with the
forces of the CG model evoked by the CG potential Uc [109, 176, 177, 183, 184].
The framework projects atomistic reference forces onto the CG scale for maintaining
consistency [109, 184]. Differences between forces obtained from the CG model and
reference forces are expressed by a mean squared error functional, which is subject to
minimization concerning the CG potential Uc. In the variational approach, the objec-
tive functional has a global minimum if the CG potential Uc equals the many-body
PMF (for a proof, see [177, 185]) or, in the vicinity of the minimum, if it is an approx-
imation to the many-body PMF. CG forces, evoked by the CG potential Uc, are eval-
uated at atomistic reference configurations represented in terms of CG coordinates.
Evaluating forces at coordinates governed by the reference trajectory implies that
MS-CG approaches do not require simulations of the CG model for learning the in-
volved parameters by minimizing the objective [186]. MS-CG approaches can repro-
duce the effective average forces in terms of CG coordinates. However, since there
is no connection to the reference distribution functions, individual correlation func-
tions, e.g., radial or angular distribution functions, are not accurately captured [116,
187]. [188] fixes this by reformulating the MS-CG approach by iteratively matching
forces and gradients of derivatives of two-body correlation functions. Convergence
is though not guaranteed and the methodology fails in reproducing three-body dis-
tribution functions. In most cases, the MS-CG approaches rely on a linear mapping
from a fine scale to CG coordinates, which was extended by [189] to nonlinear map-
pings that facilitate the use of the collective variables [190] identified in the MS-CG
framework.

Relative entropy CG approaches These approaches [178–181] belong to the group
of variational CG methods that minimize a functional, which yields, in the limit of
infinite basis functions representing the CG potential, the many-body PMF. Relative
entropy CG relies on an information theoretic objective that seeks to minimize the
overlap of two probability distributions. The relative entropy or Kullback–Leibler
(KL) divergence is a special case of the Rényi α divergence [191–193]. The KL diver-
gence is asymmetric and is greater than or equal to zero. The distributions involved
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(the atomistic reference and the CG distribution) require expressions concerning
atomistic coordinates. The reference Boltzmann density is naturally an expression
in terms of the fine-scale coordinate, while the corresponding CG distribution eval-
uated on the fine-scale involves a normalization. The renormalization relates to the
degeneracy of CG states, which is the mapping of multiple FG configurations to
identical CG variables. The so-called mapping entropy term in the proposed objec-
tive links the degeneracy of multiple fine-scale configurations to one CG state [180].
This term is independent of the parametrization of the CG potential and expresses
the unavoidable loss of information due to utilizing a lower resolution description
of the atomistic ensemble caused by the fine-to-coarse mapping. Expressing the CG
potential as a linear combination of basis functions and parameters, as shown in
[180], yields an objective providing a global maximum, which is a compelling prop-
erty and enables the application of a broad set of optimization algorithms, as inves-
tigated in [194]. Refer to Section 2.2.2 for more details on the relative entropy CG
methodology.

Both approaches yield, in the limit of a complete set of basis functions for express-
ing the CG potential, the many-body PMF, or, in case of employing a limited set
of basis functions, an optimal approximation to the many-body PMF. All references
above for the MS-CG and relative entropy CG approaches include terms up to sec-
ond order in the CG potential functional. However, as emphasized by [187, 188],
relevant multi-body distribution functions [195], e.g., the angular distribution, are
not resolved to sufficient accuracy when considering terms up to second order in the
CG potential. In contrast, three-body interactions are responsible for phenomena in
polymers [196, 197] and liquid crystal physics [198]. Variational objectives (MS-CG
and relative entropy approaches) circumvent the estimation of reference correlation
functions and CG higher-order correlations since they rely directly on the trajectory
compared to associated statistics. The first approaches that extend the expressiv-
ity of the CG potential using three-body terms [115, 117, 173] have had significant
success in improving CG water models and provide better approximations to an-
gular structural distributions. Further developments extend the MS-CG approaches
by considering fixed functional forms of three-body terms in the CG interaction po-
tential. Applying a cutoff radius of 3–4 Å, balances the computational burden with
model flexibility and accuracy. Additional advancements [185] introduce a set of ba-
sis functions for two- and three-body interactions, which softens the assumption of
the functional form. Adaptive basis functions describing the CG potential have been
introduced based on the MS-CG approach [199]. Refer to [200] for a more detailed
discussion on variational CG approaches and explicitly MS-CG and relative entropy
CG.

Introduced CG methods suffer when many metastable states with differing op-
timal collective or slow variables exist. For each conformation, a different set of CG
variables and thus, a different fine-to-coarse mapping may be beneficial for obtain-
ing simple CG interaction potentials. Ultra coarse-graining (UCG) [201] addresses
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challenges arising due to multimodality by facilitating various CG mappings. The
authors introduced a latent discrete random variable to select the conformation (e.g.,
folded or unfolded) and assign to each particular mode a predefined individual
mapping and, likewise, a parametrized local CG interaction potential. The UCG
approach is readily incorporated in variational CG frameworks, MS-CG, and rela-
tive entropy, which drive the parameter learning process. Beyond coping with mul-
tiple local CG mappings, UCG provides improved convergence in the associated
optimization problem. [202] provides the numerical details of the UCG approach
combined with the FM-CG variational objective for 1,2-dichloroethane, which has
two distinct conformations governed by dihedral angles. Local CG potentials as-
sociated with corresponding modes have been considered as independent thus far.
[203] extends the local, independent CG potentials by considering interaction terms
shared over various conformations and weighted by conformation-dependent mix-
tures. Sharing the parametrization combines advantages of conformation-specific
CG variables with having simple and structured CG interactions based on mode-
dependent responsibilities. The mode-associated weights depict conditional poste-
rior distributions or responsibilities (in the context of Gaussian mixture models) of
interactions in a particular state. Nonetheless, UCG requires insights regarding ex-
istent conformations and individually specified fine-to-coarse mappings. Thus, the
definition of CG variables in each basin of the free-energy landscape. However, as
mentioned in [201], defining useful fine-to-coarse mappings in the absence of prereq-
uisite system knowledge depicts a ubiquitous problem. The modeler’s insight may
not suffice, recognizing most characteristic slow coordinates for each conformation
and introducing appropriate CG variables.

Further CG approaches are based on free-energy computations [204, 205]. How-
ever, their primary purpose is to escape from deep free-energy basins and are limited
to few CG variables. Adaptive multiscale formulations [206–211], developed with
mathematical rigor for equilibrium and non-equilibrium situations, focus on CG lat-
tice systems. Extensions for time-dependent variational frameworks rely on force
matching, relative entropy, and probabilistic objectives [212–218]. An attractive Bay-
esian formulation of CG dynamics was presented in [219]. Since the focus of this
work is on equilibrium methods, we refer to the comprehensive review in [220] on
non-equilibrium CG methodologies.

Thus far, all discussed CG methodologies require two modeling components:

(i) A definition of a fine-to-coarse mapping function, and thus the definition of
the CG variables.

(ii) A parametrized formulation of the CG potential describing how CG variables
interact.

The rise of deep learning models [221], backed by algorithmic advances that can
efficiently utilize modern GPU platforms [222], has encouraged research into novel
CG approaches that incorporate deep models. DeepPCG [223] is a CG approach
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based on force matching in which the CG potential is parametrized via a deep neu-
ral network instead of via a physically motivated composition of basis functions,
such as pairwise and three-body terms. Reference [224] poses the identification of a
CG potential as a supervised learning problem. Given input CG particle positions,
the methods predicts CG interaction forces based on a neural network [225]. Sim-
ilar to DeepPCG, the overall objective compares implied CG forces to forces of a
reference trajectory represented on the CG scale. However, [226] implements this
with a physically motivated feed-forward neural network. CGnet provides a map-
ping from input Cartesian coordinates to associated CG forces, while Cartesian co-
ordinates propagate through a first “featurization” layer of the neural network to a
relative representation for further use. The relative representation utilizes pairwise
distances and sines and cosines of angles defined by three adjacent CG particles. The
relative representation removes partially nonlinearities of a purely Cartesian repre-
sentation and alleviates the required complexity of the neural network. The layers
after featurization employ a composition of artificial neural networks that propa-
gate the input to the corresponding CG potential energies and their gradient, the
CG interaction forces. However, a definition of the essential CG features in terms of
a fine-to-coarse mapping is still required a priori. In addition to formulating the CG
process as a supervised learning problem, as proposed in [224], reference [227] crit-
ically and extensively discusses the use of dimensionality reduction methods and
unsupervised and supervised learning approaches in the context of insightful CG
approaches.

Following implicit generative models [228, 229], [230] proposes an adversarial
minimax objective in the context of CG. The approach minimizes a general f diver-
gence [192] between the FG reference Boltzmann distribution projected on the CG
scale and the CG counterpart while maximizing the objective concerning the pa-
rameter specifying the f divergence distance metric. Special cases relate to relative
entropy CG approaches [231] and the Hellinger distance [232, 233].

Despite the rise of machine learning, the approaches mentioned above still re-
quire a decent amount of physical insight in defining a fine-to-coarse mapping and
the transformation to a featurized representation. Even if neural network layers ad-
dress this featurization, the employed features are pre-specified and not revealed
after a learning process. Thus, physical insight is required a priori.

A similar unsupervised CG approach, introduced in [234], relies on an alterna-
tion of a variational autoencoder [235]. The employed loss function decomposes
into a reconstruction loss term and a mean force regularization term multiplied
by a weight factor. The weight factor depicts a hyperparameter. Advantageous
of the proposed formulation is a discrete and parametrized mapping that assigns
atoms to CG macromolecules. The mapping can reveal optimal CG beads and, thus,
the approach has the potential for identifying appropriate CG resolutions. Refer-
ence [234] implements the discrete mapping which is efficiently realized by a cate-
gorical reparametrization with a Gumbel-softmax transformation [236]. However,
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the involved weight parameter associated with the regularization term affects the
optimal model parametrization, which requires further detailed study [237].

Interesting recent attempts utilize the reverse definition of the relative entropy
supported by invertible neural networks [238, 239], which enables the learning of
CG models without simulating an atomistic reference trajectory but instead by eval-
uating the atomistic interaction potential and corresponding forces for samples gen-
erated from the CG model [240, 241]. In their work, invertible neural networks en-
able inference without introducing further approximations, like constructing upper
or lower bounds on the optimization objective. However, the samples generated
from the CG model do not match the reference state probabilities, and thus, the
FG reference Boltzmann distribution. The work corrects the state probabilities by
employing a post-processing step utilizing reweighting importance sampling. Such
physics-informed deep learning approaches are successfully applied in the context
of partial differential equations [242, 243].

The approaches introduced thus far utilizing deep learning require a vast amount
of training data to stabilize the training of overparametrized neural network repre-
sentations. Graph-based CG methodologies can make efficient use of training data
since each molecule’s structure is reflected in the model parametrization [244–246].

[247] was the first study to compare CG interaction potential models under a
fully Bayesian framework. The authors developed an automated algorithm for mo-
del selection and validation, utilizing the model evidence and the posterior model
plausibility. The iterative algorithm was based on Ockham’s razor [248] and refines
the CG interaction potential by utilizing the most plausible models from the preced-
ing iterative steps. This methodology involves computing the model evidence, and
thus, the marginalization concerning the model parameters, which is computation-
ally impractical for sophisticated and flexible interactions. Furthermore, the model
validation step depends on the choice of observables. Reference [249] studies a Bay-
esian framework for model selection considering multiple mappings, which imply
multiple CG resolutions for representing water. These fine-to-coarse mappings yield
CG beads consisting of three to six water molecules. The CG beads encompass one,
two, or three bonded CG particles per bead, while inter-particle interactions per CG
bead consider combinations of bonded and electrostatic components. Non-bonded
interactions between CG beads follow a Lennard-Jones potential. The likelihood,
which [249] utilizes in the generative model, represents observables (density, dielec-
tric constant, surface tension, isothermal compressibility, and shear viscosity) esti-
mated from long FG simulations. However, this approach involves marginalizing of
the model parameters, which requires a vast number of CG MD simulations associ-
ated with a tremendous computational cost per parameter set. The authors address
the computational burden by incorporating a Gaussian process regression [250] that
directly computes required observables based on the input model parameters and
thus circumvents extensive CG MD simulations. However, training the Gaussian
process and producing a few reference observables for the given model parameter
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set, induces a moderate computational overhead.

Mapping

In the limit of employing a complete set of basis functions for the CG potentials,
methodologies such as the MS-CG and relative entropy CG provide a general frame-
work for identifying the many-body PMF. Even if it sounds compelling to have iden-
tified the many-body PMF, or an approximation that is close to it, this does not imply
that the CG simulations provide the same information as a simulation of the fully
resolved atomistic system. The loss of information is unavoidable due to the reduc-
tion in the number of degrees of freedom, which is explained well in the context
of relative entropy CG approaches with mapping entropy. The prespecified non-
parametrized mapping induces the information loss [251]. The mapping and thus,
the CG variables define the resolution in the CG model and the level of detail needed
to encompass the information provided by atomistic simulations. The identification
or selection of CG variables is crucial to the expected predictability of observables
and phenomena captured in the CG model.

[252] studied different mappings for polystyrene. The fine-to-coarse mappings
yielded similar CG resolutions with different groups of atoms defining a single CG
bead. A further systematic study on fine-to-coarse mappings was undertaken by
[253]. These studies provide a rigorous way to understand the dependence of the
accuracy of the CG model on the fine-to-coarse mapping. However, a modeler’s
chemical insight and experience are still required to construct the CG beads and
thus, the definition of the mapping.

The essential-dynamics CG methodology [254] utilizes knowledge from perform-
ing a principal component analysis [255] for defining optimal CG sites. Other ap-
proaches rely on optimizing an elastic network [256, 257], such as for large biomole-
cules [258].

An automated approach for testing different mappings, from an atomistic rep-
resentation to a CG model, was proposed by [259]. The authors utilized a mapping
operator tree consisting of all symmetry-preserving mappings in a graph-based rep-
resentation of a molecule. At the highest resolution, nodes, which represent atoms,
are connected with edges, which depict atomistic bonds. Their approach relies on
minimizing the difference in the summed node entropy [260] between paths in the
mapping operator tree. The entropy utilized for comparison is the entropy of the
velocities of a group of atoms and provides a measure of how homogeneous atoms
move within a group. [259] develops automated procedures for finding optimal
mappings in terms of the entropy. However, obtained fine-to-coarse mappings al-
ways rely on the center of mass of the group of atoms. As a natural extension of
linear mappings, can nonlinear or multi-component dimensionality reduction meth-
ods, such as temporal-independent component analysis [261] or kernel principal
component analysis [262], improve the information content per CG variable [190,
263].
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[264] represented a molecule of interest as a molecular graph and also applied
grouping methodologies based on the eigenvector centrality. Nodes rank by their
contribution to the largest eigenvalue of the adjacency matrix. Potential CG beads
are then synthesized from the corresponding descendants [265].

The approach proposed in [266] identifies, from a set of given CG mappings and
corresponding CG interaction potentials, the one which is most promising for ob-
served distributions compared to the atomistic reference via the Jensen–Shannon
divergence [267, 268]. This approach, however, does not train mapping-specific CG
potentials but instead utilizes the Martini force field1 [270, 271] with predefined in-
teractions between a library of CG beads. The interactions are specific to the type
of CG macromolecules and depend on which species of atoms map to one CG site.
Further descriptions can be found in [114, 272–274].

Adaptive concurrent multiscale modeling approaches [275] can couple resolu-
tions from the atomistic viewpoint up to the continuum description of materials,
which is relevant, e.g., in the context of predictive simulations of crack propagation
[276, 277]. The adaptive resolution scheme (AdResS) proposed in [278–281] con-
currently couples multiple resolutions, e.g., a full atomistic description with a CG
viewpoint, by conserving linear momentum. Adaptive reslolutions are especially
compelling when the atomistic dynamics of a solvent influence the solute (e.g., a
peptide) in a spatially limited volume fraction alongside the solute but have less
influence in the far-field. Predefined transition areas appropriately weight the CG
forces and effective atomistic forces per molecule [282]. An extension of AdResS con-
nects MD simulations with dissipative particle dynamics simulations [283], which
enables the simulation of correct hydrodynamics.

1.2.2 Summary and challenges

All CG approaches, as mentioned earlier, rely either on structural correlations, ther-
modynamic observables, or directly on FG reference trajectories. While relative en-
tropy CG employs reference Cartesian coordinates, use force-matching or MS-CG
approaches reference forces obtained from fine-scale atomistic trajectories. Struc-
tural CG approaches utilize pairwise distance distributions (IBI) or, besides, cor-
relations between pairwise radial distribution functions (IMC) from FG reference
simulations. All data-driven CG approaches employ non-parametrized predefined
mappings, which represent a functional relation from the input atomistic coordi-
nates to the analogous CG variables. However, more than one set of atomistic co-
ordinates can yield the same CG representation, e.g., when utilizing the centers of
mass as CG variables for the atomistic description of water molecules [284]. The
definition of many-to-one mappings is predominantly influenced by the modeler’s
physical intuition and experience [100]. Automated approaches for identifying the
most promising fine-to-coarse mapping still require physical insight in creating a

1The Martini CG force field was obtained by using top-down CG approaches to match experimental
properties [269].
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comprehensive library of mappings. A systematic approach based on molecular
graphs suffers from combinatorial possibilities forming CG beads and the computa-
tional burden associated. Furthermore is the superiority of particular fine-to-coarse
mappings dependent on the observables sought to predict. All considerations, as
mentioned earlier, naturally yield the question of how to assess the quality of CG
models and rigorously compare different models [285, 286].

The CG methodologies reviewed earlier utilize all-atom data (trajectories and
forces) projected onto the CG scale and reference observables computed from the CG
representation of all-atom reference trajectories. Thus far, after applying the fine-to-
coarse projection, the detailed information from classical first-principles simulations
is not available to the CG model anymore and cannot be recovered due to lacking
coarse-to-fine connections. Potential mappings need to be well-conceived while they
may lead to observable-dependent capabilities. Integrating out degrees of freedom
prevents CG models from reproducing observables explicitly depending on FG co-
ordinates. E.g., employing a molecule’s center of mass as a CG description prohibits
the estimation of observables depending on structural correlations between atoms
within this molecule. There is no structural correlation defined with regards to the
CG representation in the previous case. Models that cannot reason about the FG
variables only suffice for quantities of interest that are fully defined by a CG repre-
sentation of the FG atomistic coordinates. In general, however, depend quantities
of interest on FG coordinates, which leads to the problem of representability as dis-
cussed in [145, 284, 287].

Furthermore, matching quantities concerning reference observables expressed
in terms of the CG scale is no guarantee that the associated CG model encodes FG
physics. FG fluctuations, however, do influence the thermodynamic observables in
particular and are essential for providing a fully predictive CG model that would
allow for reasoning FG coordinates given a coarse representation [288, 289]. At-
tempting to establish a reverse coarse-to-fine mapping raises two questions: What
CG resolution is sufficient? How many CG variables are needed to encode the all-
atom behavior? The term “sufficient” for the quality of CG predictions requires a
consistent definition enabling comparability between CG models [290]. A fine-to-
coarse mapping is a many-to-one mapping and is thus not invertible, which is prob-
lematic when elaborating a consistent mapping back to the fully resolved atomistic
scale. Beyond developing a parametrizable map, are mappings interesting, which
could reason about FG coordinates given the coarse representation. Providing a
connection back to the fine-scale supports encoding and revealing relevant physics
rather than employing physical intuition for pre-specifying mappings. Additionally,
given a CG variable, mapping back to FG coordinates enables the employment of the
CG potential for biasing FG simulations to positively influence the exploration of
the configurational space providing favorable circumstances for escaping from free-
energy minima [291]. Besides the reconstruction mapping from coarse to fine, it is
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relevant to identify assigned CG variables given fully atomistic coordinates for mo-
del interpretability, in agreement with [292]. In particular, we need to develop CG
methodologies that illustrate and reveal the underlying physical processes and thus
enhance our understanding of atomistic systems using CG representations rather
than assuming physical intuition a priori for creating CG models.

The availability of training data directly affects the credibility of estimates of
observables obtained from CG models [293, 294]. The uncertainty due to the limited
availability of training data needs to be accounted for in design processes relying on
CG models, which we also address with our proposed approaches [295].

Thus far, the CG potentials decompose into physically motivated parametri-
zed interaction terms for pairwise bonded interactions or non-bonded interactions.
Some approaches attempt to include three-body interactions, which increases the
computational burden. It is challenging to choose the right interaction terms in
the CG potential. Doing so requires a vast amount of prerequisite physical insight,
which we instead seek to reveal with the CG methods proposed in this work. Pro-
viding a complete set of basis functions is one possibility. However, the strategy
mentioned earlier works only in a big data regime, whereas our focus is on small
data, as is applicable in MD simulations. Instead, we develop an automated process
to select relevant basis functions given limited training data. Coping with limited
data facilitates the identification of physically relevant features that are associated
with the appropriate basis functions. Instead of identifying the most salient fea-
tures from a large set of basis functions, we explore besides the opposite approach,
where we start with a few basis functions and iteratively refine the CG potential
by adding relevant features. Moreover, we explore how to learn flexible coarse-to-
fine mappings, which can reveal physically relevant features instead of predefining
mappings and, thus, the meaning of CG variables. Given the enhanced mapping
flexibility, it suffices to model CG variables with simple distributions [235].

In general, we seek to develop fully Bayesian predictive CG methodologies to
facilitate the reconstruction of the FG picture and enable thus the estimation of ob-
servables that depend on all-atom coordinates. All estimates are fully probabilistic
and account for uncertainties due to the limited data. We are interested in achiev-
ing this without any prior physical insight. We can reveal the relevant slow coordi-
nates of an FG simulation and the most relevant CG interactions using an automated
process. We present methodologies that enable the robust training of variational au-
toencoders and neural networks, in general, while fully incorporating the available
physics.

1.3 Impact and contributions

We develop a CG framework to address the shortcomings above by employing gen-
erative probabilistic graphical models [296, 297]. The CG framework introduced
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coherently follows the Bayesian paradigm and rigorously addresses model selec-
tion and validation [298, 299]. Unlike most CG approaches, which explicitly define
the coarse variables by a many-to-one fine-to-coarse mapping, we propose a proba-
bilistic coarse-to-fine mapping that implicitly defines CG variables. Involved lower-
dimensional CG variables are supposed to give rise, through the probabilistic map-
ping, to the full atomistic resolution. The proposed approach follows the concept of
probabilistic generative models, which implies the generation of observed atomistic
configuration through an underlying hidden CG structure. The generative process
allows for obtaining atomistic configurations through producing CG states and em-
ploying the probabilistic coarse-to-fine mapping, which is a conditional probability
distribution given the CG state. The framework developed enables the reconstruc-
tion of FG states and thus, the estimation of observables governed by complex in-
terdependencies in the FG model. Beyond point estimates of observables allows the
Bayesian formulation obtaining posterior distributions over the model parameters
that account for the credibility of model parameters. We can propagate this cred-
ibility to estimates of observables and provide error bars or credible intervals for
observables that reflect the uncertainty induced [300, 301]. The credibility depends
on the amount of training data and of the unavoidable information loss.

Finding expressions for the CG interaction potential relies on having a rich set
of basis functions, whereas we automatically synthesize the most relevant features
using functional sparsity priors. The relevant features correspond to physical corre-
lations or the smoothness of the CG interaction potential induced by the reference FG
model. The identified features allow us to gain physical insights into the underlying
all-atom model [302, 303]. Beyond revealing physics by identifying the most salient
features, sparse models can cope with a limited amount of training data to provide
a robust CG framework. Alternatively to selecting the most relevant features from
a rich basis, we develop an approach that adaptively adds the most promising fea-
tures, starting from a simple basis. Specifically, we address the addition of optimal
radial basis functions where the kernels are optimized to maximize the anticipated
benefit when adding them. The developed approach provides an efficient way to
decide which type of basis functions are most relevant, whithout predefining a com-
prehensive library of feature functions. The proposed strategy can be adopted in the
context of high dimensions, since providing a sufficiently rich set of basis functions
is impractical in such context.

Instead of providing flexibility in the CG potential, we explore an approach for
learning flexible coarse-to-fine maps, which can reveal physically relevant insights
and slow collective variables. E.g., in the context of peptides, identified CG vari-
ables indicate the relevance of the dihedral angles. Taking the dihedral angles as a
lower-dimensional description of peptides is known as an apt description which we
discover without any prior physicochemical insight. The description obtained can
be further employed in enhanced sampling methods, as we propose in the outline
of this thesis.
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Providing sufficient training data can be a challenging problem, as there may
be multiple free-energy minima. The rugged free-energy surface prevents MD sim-
ulators from escaping basins and thus, exploring different conformations [304]. We
propose a methodology that avoids simulating a FG system by using a reverse KL di-
vergence objective. This yields a physics-embedding deep learning approach where
a CG model can be optimized only by assessing the potential energy and forces of
the FG system for samples generated from the CG model [242, 243, 305]. We suc-
cessfully apply the developed methods to bimodal distributions, which are difficult
to sample. The proposed approach is a basis for exploring the application of CG
models to large biomolecules.

1.4 Outline

The remainder of this thesis is structured as follows. After specifying the research
objectives and the contributions of the methodologies developed in this thesis, Chap-
ter 2 introduces the notational conventions and mathematical basics of MD simula-
tions. The chapter has a section on the consistency of CG models and the compu-
tation of observables with FG or CG simulations. We introduce Bayesian modeling
and inference and further include a short introduction to the Monte Carlo methods
applied in this work. One specific CG approach, the relative entropy methodology, is
introduced as well since some of our developments build on this framework. Chap-
ter 3 introduces a predictive CG framework that enables the reconstruction of the
FG picture given CG variables and the quantification of uncertainties due to limited
data and information loss, reflected in credible intervals for observables. Chapter 4
introduces a methodology for the adaptive addition of the most promising features
in the CG potential by maximizing the anticipated benefit. Chapter 5 describes a
methodology that employs deep neural networks to reveal the essential collective
variables and to quantify the uncertainties. We present in this chapter further an ap-
proach for sparse neural networks and robust learning in the low-data regime. A CG
framework that completely circumvents the need for reference simulations by fully
incorporating the available physics is proposed in Chapter 6. Chapter 7 provides an
overarching discussion, summarizes, and outlines the work presented in this thesis.
The methods developed may be employed in novel research on enhanced sampling
approaches.
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Chapter 2

Methodologies

This chapter introduces the methodological basis of the present work. We summa-
rize the atomistic simulation tools for estimating observables, which we employ for
reference and predictive estimates (Section 2.1). We define fine-to-coarse mappings
and introduce the relative entropy CG approach on which our work is based. Section
2.2 discusses the consistency of CG variables and observables based on CG variables
compared to fine-scale coordinates. We introduce the probabilistic generative mod-
eling approach and the motivation for uncertainty quantification and propagation
in Sections 2.3 and 2.4. In Section 2.5, methodologies for inferring latent variables
and model parameters are introduced. A core component of inference builds Monte
Carlo (MC) estimates of integrals, as presented in Section 2.6. Section 2.7 introduces
stochastic optimization, which is an important tool in the context of approximate
inference and the presence of noisy gradient estimators.

2.1 Atomistic simulations

Atomistic simulations allow us to resolve detailed microscopic behavior for a vari-
ety of systems in solid-state physics and biochemistry, whereas molecular dynamics
(MD) simulations rely on a time integration of the classical equations of motion.
Alternative methods of simulating atomistic systems are MC sampling approaches
[306], which are especially common in solid-state physics [156, 307, 308]. An MD
simulation estimates quantities of interest as time averages while a MC method uti-
lizes averages over the statistical ensemble, which are the same in the limit [309,
310]. In the following, we focus on MD simulations. For more on MC methods, see
the general introduction in Section 2.6.

2.1.1 Molecular dynamics

MD simulations are based on solving the classical equations of motion of many-
body systems. Np atoms are modeled as particles based on the position of their
nuclei. These particles move due to interatomic forces.

The classical equations of motion follow Newton’s second law:

miẍi = fi, ∀i ∈
{

1, . . . , Np
}

, (2.1)
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where xi is a vector of Cartesian coordinates, mi the atomic mass, and fi the force act-
ing on particle i. Atomic positions and velocities are a function of the current time
step t and thus, also the interatomic forces fi(x1, . . . , xNp) depending on the current
particle positions. For Equation 2.1, there exists a unique solution for a given set of
initial positions {xi(t = 0)}Np

i=1 and velocities {ẋi(t = 0)}Np
i=1 at t = 0. Analytic solu-

tions of Equation 2.1 exist only in a very few cases, however, and not for practically
relevant systems. Solving the equations of motion thus requires numerical iterative
schemes yielding approximate solutions at discretized time increments with an in-
crement ∆t [311, 312].

To explain the requirements for numerical integration schemes in MD, it is ben-
eficial to introduce the Hamiltonian representation of the equations of motion from
Equation 2.1:

H(p, x) ≡ H
(

p1, . . . , pNp , x1, . . . , xNp

)
=

Np

∑
i=1

p2
i

2mi
+ U

(
x1, . . . , xNp

)
, (2.2)

where the momenta pi = miẋi and the interaction potential U(x1, . . . , xNp). Given
the interaction potential, the interatomic forces fi are obtained with

fi = −
∂U
∂xi

. (2.3)

Transforming the Hamiltonian in Equation 2.2 to give the positions and momenta:

ẋi =
∂H
∂pi

=
pi

mi
(2.4)

ṗi = −
∂H
∂xi

= −∂U
∂xi

= fi

(
x1, . . . , xNp

)
. (2.5)

The equations of motion in Equation 2.1 can be derived by taking the time derivative
of Equation 2.4 and replacing the expression for the momentum in Equation 2.5 [91,
98]. Two main properties of Equation 2.1 are worth mentioning:

1. The equations of motion are reversible in time.

2. They conserve the Hamiltonian (Equation 2.2), thus [14]:

dH
dt

=
Np

∑
i=1

[
∂H
∂xi

ẋi +
∂H
∂pi

ṗi

]
=

N

∑
i=1

[
∂H
∂xi

∂H
∂pi
− ∂H

∂pi

∂H
∂xi

]
= 0. (2.6)

Conserving the Hamiltonian is the same as conserving the total energy of the
system, which is relevant when linking MD and statistical mechanics [97].
More details on statistical mechanics are provided in Section 2.1.2.

A well-studied time integration method for MD simulations is the Velocity-Verlet
algorithm, which provides a reasonable balance between accuracy and efficiency. It
preserves volumes in the phase space, thus it is symplectic. The relevant update
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equations for obtaining positions and velocities at t + ∆t are

xi(t + ∆t) = xi(t) + ∆tẋi(t) +
∆t2

mi
fi(t) +O

(
∆t3) , (2.7)

ẋi(t + ∆t) = ẋi(t) +
∆t

2mi
(fi(t) + fi(t + ∆t)) +O

(
∆t3) . (2.8)

Simulating the equations of motion provides a trajectory resembling the microcanon-
ical ensemble with constant energy E for Np particles and constant volume V. Ther-
mostats [313, 314] are employed to simulate a trajectory preserving other statistical
ensembles, for example, for the canonical ensemble that preserves the temperature
T instead of the total energy E. The number of particles Np and volume V are also
preserved in canonical and microcanonical ensembles.

All reference trajectories produced in this work utilize the velocity-Verlet algo-
rithm, which is implemented in different MD packages, for example, LAMMPS [315]
and GROMACS [316–322], and OpenMM [44].

For more details on alternative time integration methods, incuding the advan-
tages and disadvantages, refer to Refs. [323, 324]. For higher-order methods, see
Ref. [325].

2.1.2 Equilibrium statistical mechanics

Statistical mechanics provide a link between equilibrium thermodynamic properties
and microscopic details, i.e., the positions of atoms. Multiple microscopic configu-
rations yield identical macroscopic properties [326], so for a large system, it is un-
necessary to know explicitly the particle motions in detail.1 Different ensembles,
corresponding to different partition functions or normalization constants, can yield
the same probability distributions of microscopic states [327].

We discuss here the probability distribution and corresponding partition func-
tion or normalization constant for the, in our case pertinent, canonical ensemble.
More details on other ensembles can be found in Refs. [328, 329].

Atomistic states that are characterized by the generalized coordinates x ∈ Mf ⊂
Rnf , with nf = dim(x), follow the Boltzmann–Gibbs density for the canonical en-
semble:

pf(x; β) =
1

Zf(β)
e−βUf(x), (2.9)

where the inverse temperature β = 1/kBT for the Boltzmann constant kB. The
temperature-dependent denominator in Equation 2.9, Zf(β), normalizes the prob-
ability of states and is referred to as the partition function or normalization constant:

Zf(β) =
∫
Mf

e−βUf(x) dx. (2.10)

1Unless one is interested in dynamics.
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For atomistic systems, the integration involved in determining Zf(β) in Equation
2.10 depends on high-dimensional x, making it impractical. MC methods can cir-
cumvent the estimation of Zf(β) and allow samples x ∼ pf(x; β) to be drawn from
the ensemble distribution [330]. The Helmholtz free energy, computed by utilizing the
the partition function Zf,

F = −β−1 log Zf, (2.11)

is a fundamental quantity in molecular systems, since it completely defines the in-
ternal energy or the entropy of the system [330, 331].

The distribution of the fine-scale coordinates x introduced in Equation 2.9 is also
referred to as the target distribution, since we want to recover it using approximate
distributions. Therefore, the notation ptarget(x; β) with subscript “target” refers to
the fine-scale distribution pf(x; β).

2.1.3 Force fields

The force fields employed are traditionally split into bonded and non-bonded in-
teractions. Non-bonded interactions, with contributions from one-body, pairwise,
three-body, and even, higher-order interactions, contribute significantly to the over-
all computational cost per time step [332]. Considering non-bonded interactions up
to a limited distance, or cut-off radius rcut, balances the computational burden and
accuracy of simulations, as critically discussed in Ref. [333].

We employ in this work well established force fields. For simulations of water,
we use the SPC/E model [334–336] and for peptides, AMBER ff96 [337–339]. Clearly,
a variety of force fields have been optimized for different fine-scale characteristics,
as discussed for peptides in Ref. [340]. Investigating different fine-scale force fields
is, however, out of scope for this work.

To demonstrate the different contributions and their physical motivation, we de-
note the general form of the AMBER force field as

UAMBER(x) = ∑
bonds

Kr
(
r(x)− req

)2
+ ∑

angles
Kθ

(
θ(x)− θeq

)2

+ ∑
dihedrals

Kn

2
[1 + cos(nφ(x)− γ(x))]

+ ∑
i<j

[
Aij

Rij(x)12 +
qij

Rij(x)6 +
qij

εRij(x)

]
+ ∑

H-bonds

[
Cij

Rij(x)12 −
Dij

Rij(x)10

]
(2.12)

Above summations encompass dihedral bonds including four atoms, angular bonds
involving three bonds and pairwise harmonics. All components in Equation 2.12
that depend on the atomic positions x are either distances between particles (r(x) and
Rij(x)) or angles (θ(x), φ(x), and γ(x)). Components with subscripts (·)eq in Equa-
tion 2.12 refer to the equilibrium state and are treated as parameters.
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{ε, qij, Aij, Cij, Dij} are parameters for non-bonded interactions, whereas {Kr, Kθ , Kn}
represent the stiffnesses of the bonds considered [332].

2.1.4 Calculating quantities of interest

Let us denote the function a(x) : Mf → R. It corresponds to a physical observable
(e.g., structural pairwise distances). Then, we can utilize the ensemble approach and
compute macroscopic quantities of interest as phase averages:

〈a〉pf
=
∫
Mf

a(x)pf(x; β) dx. (2.13)

where 〈·〉p represents a phase average or expectation, which is equivalent to the
notation Ep[·]. In the MD approach, quantities of interest are computed as time
averages given a trajectory {x(t)|t = 0, . . . , τ}:

āτ =
1
τ

∫ τ

0
a (x(t)) dt. (2.14)

In the limit, according to the ergodic hypothesis, quantities obtained by ensemble av-
erages (Equation 2.13) are equivalent to quantities estimated as time averages (Equa-
tion 2.14):

lim
τ−→∞

āτ = 〈a〉pf
. (2.15)

For more details on the ergodic hypothesis, see Refs. [97, 327].
Clearly, the integral in equation (2.13) is analytically intractable and also numer-

ically impractical even when applying Markov chain-based approximators, which
we will introduce in Section 2.6. Estimating Equation 2.14 requires long and com-
putationally expensive trajectories produced from MD simulations. In MC and MD
approaches, the prohibitively large computational cost directly relates to the high-
dimensional phase space x [117]. Instead of estimating quantities of interest a(x)
that depend on FG states x, utilizing CG surrogate models reduces the amount of
computation since they reduce the dimensionality of the phase space of the refer-
ence fine-scale system. Thus, simulating and estimating observables for a reduced
CG description provides a speedup.

2.2 Coarse-graining

As well as an efficient means of estimating quantities of interest expressed in terms
of CG variables z, we develop a CG methodology for estimating expectations of any
observable defined with regards to fine-scale coordinates x. Existing approaches
limit the estimation of observables depending on only CG variables z. They do not
allow us to reason about fine-scale coordinates x and thus, connected observables
depending on x, as emphasized in the introduction in Section 1.2. However, before
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considering the novelties of the proposed CG approaches, we introduce the required
notation.

We denote CG coordinates as z, with z ∈ Mc ⊂ Rnc . The CG variables have
a lower dimensionality compared to the fine-scale coordinates, and thus, nc � nf.
The CG variables z interact with a corresponding CG potential Uc(z), so we can
introduce the CG density,

pc(z) =
1

Zc
e−βUc(z), (2.16)

and the normalization constant,

Zc =
∫
Mc

e−βUc(z)dz. (2.17)

Thus far has, we have not introduced any connection between fine-scale coordinates
x and coarse-scale variables z. As mentioned in the introduction in Section 1.2, most
CG approaches rely on an explicit restriction, i.e., a fine-to-coarse map R : Mf →
Mc. CG variables are defined by the restriction z = R(x). In general, this restriction
maps multiple fine-scale states to identical CG variables. This implies a many-to-one
map, which is not invertible for obtaining FG variables x given a CG state z [194].

2.2.1 Consistency in CG models

Given the restrictionR and the reference ensemble probability distribution pf(x), the
many-body PMF defines the optimal CG interaction potential. If we are interested
in expectation values of observables that depend directly on the CG variables z, then
the fine-scale observable a(x) can be replaced by an observable expressed in terms
of CG variables A(R(x)) = A(z). The following equality holds:

a(x) = A (R(x)) = A(z). (2.18)

With this equality, we can express the estimation of observables in terms of CG vari-
ables as follows [145, 341, 342]:

Epf [a] =
∫
Mf

a(x)pf(x) dx

=
∫
Mf

A (R(x)) pf(x) dx

=
∫
Mf

(∫
Mc

A(z)δ (z−R(x)) dz
)

pf(x) dx

=
∫
Mc

A(z)
(∫
Mf

δ (z−R(x)) pf(x) dx
)

︸ ︷︷ ︸
=popt

c (z)

dz

=
∫
Mc

A(z)popt
c (z)dz.

(2.19)
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Taking a closer look at the second last line in Equation 2.19, we identified the optimal
CG density popt

c (z), which can be obtained by marginalization with respect to x:

popt
c (z) =

∫
Mf

δ(z−R(x))pf(x) dx. (2.20)

Connecting Equation 2.20 with the expression that includes a CG potential Uc, Equa-
tion 2.16, we obtain the many-body PMF with

Uopt
c (z) = − 1

β
log

∫
Mf

δ(z−R(x))pf(x) dx. (2.21)

While CG approaches provide more or less accurate approximations of Uopt
c (z),

finding an exact estimate of Uopt
c (z) is computationally challenging and usually an

intractable task. Even if we assume that we could obtain Uopt
c (z), simulating the

CG potential would lead to exact quantities of interest only for observables fulfill-
ing a(x) = A(R(x)) = A(z). However, many observables depend explicitly on
fine-scale coordinates, for example, correlations between atoms within CG macro-
molecules. In that case it is necessary to reconstruct the fully atomistic picture x,
given CG variables z, which are sampled from pc(z).

Thus far, CG methodologies have not been able to provide fine-scale coordi-
nates x given a CG variable z. Nevertheless, when introducing a consistent pseudo-
reconstruction mapping, it must be assumed that all x leading to the same z are
equally probable and therefore, uniformly distributed inMf, given a CG variable z.
We can, thus, write the conditional distribution:

pR(x|z) =
δ (z−R(x))

ZR(z)
, (2.22)

with the normalization, counting the realizations x leading to the same z:

ZR(z) =
∫

δ(z−R(x))dx. (2.23)

With the probability density function (PDF) for the CG variables pc(z) (Equation
2.16) and the conditional PDF needed for a consistent reconstruction in Equation
2.22, the all-atom PDF is [184]:

pR(x) =
∫

pR(x|z)pc(z)dz

=
∫

δ(z−R(x))
ZR(z)

pc(z)dz

=
pc(R(x))

ZR(R(x))
.

(2.24)
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2.2.2 Relative entropy CG approaches

With the CG density defined on the FG manifoldMf in Equation 2.24, relative en-
tropy CG approaches provide an information theoretic framework2 for comparing
the density pR, which is defined by the CG potential Uc, R, and the reference en-
semble density pf. Relative entropy CG approaches utilize a metric that quantifies
the deviation from a reference or target PDF pf (also denoted as ptarget) to the model
PDF pR, the Kullback–Leibler (KL) divergence or relative entropy [345, 346]:

0 ≤ DKL (pf(x)‖pR(x))

= −
∫

pf(x) log
pR(x)
pf(x)

dx

= −Epf(x) [log pc(R(x)] + Epf(x) [log ZR (R(x))]−H (pf) .

(2.25)

The entropy follows with

H (pf) = −
∫

pf(x) log pf(x) dx. (2.26)

Note that only the first term in the objective in Equation 2.25 can be optimized with
respect to Uc since R is fixed. The second term is fixed once we prescribe a fine-
to-coarse mapping, since it depends solely on ZR and thus, R. The expectation
Epf(x)[log ZR(R(x))] is a fixed penalty that relates the fine-to-coarse mapping to the
associated information loss due to the reduced coordinate representation [179, 200].
The original work [231] calls this term the mapping entropy.

2.3 Predictive modeling and uncertainty quantification

In the following, we review relevant3 components of probability theory from a Baye-
sian perspective, which provides a consistent approach for plausible reasoning. Bay-
esian inference enables probabilistic conclusions to be drawn from limited data and
the consistent use of new sequential evidence. A Bayesian approach allows us to
incorporate speculative information or prior knowledge that is available before we
analyze the raw data [347, 348]. In general, uncertain quantities, such as model pa-
rameters, are treated in a Bayesian approach as random variables, which enables the
propagation and quantification of the associated uncertainty [349].

Using numerical values to express the degree of belief and including coherent
rules to adjusting these quantities was done in Refs. [350, 351]. These laws are equiv-
alent to the sum and product rules in provability theory. For a broader view and for
discussions that differ from the Bayesian perspective, such as frequentist and maxi-
mum entropy approaches, refer to Refs. [352–355].

2An interesting connection between information theory and statistical mechanics was made in the
middle of the last century [343, 344].

3Relevant to this work’s developments and contributions in context of CG approaches.



2.3. Predictive modeling and uncertainty quantification 33

2.3.1 Bayes’ theorem

Bayes’ theorem allows us to combine information from some prior notion of uncer-
tain model parameters θ ∈ Rdθ , expressed as a prior distribution p(θ), with evidence
obtained from observed data xDN = {x1, . . . , xN}. Bayes’ theorem transforms the
prior distribution into a posterior distribution by incorporating observed evidence.
Observations have a conditional distribution p(xDN |θ), which indicates the likelihood
of the observed data and thus, how probable or how well the data are explained for
given parameters θ. Bayes’ rule [347] combines a prior and a likelihood:

p(θ|xDN ) =
p(xDN |θ)p(θ)

p(xDN )
. (2.27)

The posterior distribution p(θ|xDN ) accounts for the credibility of a realization of θ

after the data xDN have been observed and expresses the uncertainty in terms of a
distribution over θ [356]. The denominator in Equation 2.27 accounts for normaliza-
tion. It yields a proper distribution function of the posterior:

p(xDN ) =
∫

p(xDN |θ)p(θ) dθ. (2.28)

The measure p(xDN ) in Equation 2.28 is also known as model evidence. It provides
an estimate of the probability of observing the given data independent of the pa-
rameters θ. The evidence p(xDN ) is required to obtain the posterior distribution in
which we are interested in Bayesian inference. However, determining p(xDN ) is a
computationally intractable problem because it requires an integration in the high-
dimensional parameter space of Rdθ . Approximation methods [357, 358], such as
MC methods (Section 2.6) and modern variational inference (Section 2.5), may be
useful.

Including prior knowledge expressed by prior distributions raises the obvious
question about which probability distribution function is appropriate. As stated in
Ref. [359, 360], the subjective choice of prior distributions is a criticism of Bayesian
inference. We recommend the Bayesian approach since the influence of the prior
on the posterior distribution decays as further evidence, such as observed data, is
included. Even if the suspected knowledge is not appropriate, the data will correct
for it. Moreover, if we have some understanding of the system of interest expressed
by prior distributions, parameter learning can cope with fewer data.

As in sharing common parameters for modeling the likelihood p(xDN |θ), the pa-
rameters θ themselves may share a common hyperparameter γ that is specified by
a prior distribution p(γ). This provides a coherent approach for hierarchical exten-
sions of Bayesian models. Assuming the conditional independence of θk given γ, a
hierarchical extension is

p(θ) =
∫

p(γ)
dθ

∏
k=1

p(θk|γ) dγ. (2.29)
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Hierarchical Bayesian models can reduce the need to tune hyperparameters or they
imply a structure [298, 361, 362]. Such an extension can be used for hierarchical
functional priors. It supports machine learning of sparse models to unveil physically
relevant features, which we are interested in in this work [363–366].

Finally, Bayesian inference provides a consistent framework for drawing prob-
abilistic conclusions expressed as posterior probability distributions (i.e., p(θ|xDN ))
when making predictive estimates of quantities of interest.

2.3.2 Bayesian learning and prediction

We are interested in making predictions after including priors and observations. For
this purpose, we utilize the identified data-producing process p(x|θ) and the poste-
rior p(θ|xDN ) with

p(x|xDN ) =
∫

p(x|θ)p(θ|xDN ) dθ, (2.30)

which is the predictive distribution. Again, solving the integral in Equation 2.30 re-
quires enormous computational effort.

In addition to learning from data, Bayesian modeling can be generalized for mo-
del comparison, averaging, and selection tasks. Suppose we are interested in com-
paring K models {mk}K

k=1. Given speculation in the form of a prior distribution for a
model p(mk), we seek to obtain the posterior distribution of the model mk given the
observations xDN :

p(mk|xDN ) =
p(xDN |mk)p(mk)

p(xDN )
, (2.31)

for the model evidence

p(xDN |mk) =
∫

p(xDN |θ, mk)p(θ|mk) dθ. (2.32)

This can be interpreted as the probability of generating the observations xDN for
a model mk where the model parameters are sampled from the prior distribution
p(θ|mk) [367, 368].

Model averaging is a compelling way to combine individual models for predic-
tive purposes. The predictive distributions of individual models (i.e., Equation 2.30)
are then weighted according to their posterior probability p(mk|xDN ):

p(x|xDN ) =
K

∑
k=1

p(x|xDN , mk)p(mk|xDN ). (2.33)

Simpler approximations of Equation 2.33 utilize the most probable model with max-
imal p(mk|xDN ) [356, 369].
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2.4 Probabilistic generative models

Probabilistic modeling supplemented by deep learning leverages a variety of re-
search avenues [221, 297, 370]. In this work, we focus on developing methodologies
for learning CG models while extracting physically relevant features in terms of the
CG potential or on unveiling the slow coordinates of the system in the absence of
any model-specific insight. We use an unsupervised learning approach [371] and
rely, in particular, on probabilistic generative models [372, 373].

The quote from Richard Feynman, “What I cannot create, I do not understand,”
summarizes well the motivation behind generative models: to understand the hid-
den processes that give rise to atomistic observations xDN obtained from the refer-
ence fine-scale Boltzmann distribution pf(x). The motion of even a complex atom-
istic system with high-dimensional x is governed by a set of a few slow or collective
variables (CVs) [374]. Thus, the CVs are potent candidates, serving as an efficient
parsimonious lower-dimensional representation of x. Although CVs and CG vari-
ables z are unobserved, they give rise to the observed atomistic coordinates x, and
thus, we are interested in learning the hidden features that lead to the observed fine-
scale samples x ∼ pf(x).

We introduce a joint probability distribution for the observed atomistic coordi-
nates x and latent CG variables z:

p(x, z) = p(x|z) p(z), (2.34)

where dim(z) � dim(x) [372]. Extending the probability space with latent vari-
ables next to the observed variables facilitates the expressiveness of the joint distri-
bution. Furthermore the hierarchical structure, with lower-dimensional latent CG
variables z, promotes the unveiling of physically relevant features, as we show in
the following chapters. The probabilistic model introduced in Equation 2.34 has two
components:

(i) The density p(z) is a generator for and describes the distribution of the CG
variables z.

(ii) The coarse-to-fine mapping is probabilistic and implicitly defines CG variables
by the conditional probability distribution p(x|z).

Instead of defining a fine-to-coarse mapping operator, in this approach CG variables
are regarded as latent generators that lead, through the probabilistic coarse-to-fine
mapping p(x|z), to the observable fine-scale atomistic picture x. Flexibility is pro-
vided through the two components of the model: (1) in the form of the coarse-to-fine
mapping p(x|z) and (2) with regard to the CG description p(z). For example, the
coarse-to-fine mapping could have a simple linear form (e.g., Gaussian) or a flexi-
ble non-linear mapping (e.g., Gaussian, with mean and variance obtained from an
expressive neural network). Additionally, we can think of multiple coarse-to-fine
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mappings as each being responsible for a subset of the CG variables z, which corre-
sponds to a local mapping. Similar flexibility provides the coarse description p(z),
which is hierarchically extendable by introducing multiple layers corresponding to
different levels of CG approaches [375].

FG configurations x(i) are produced by a generative process:

(i) Obtain a CG realization z(i) from the CG distribution: z(i) ∼ p(z).

(ii) Draw a sample x(i) with x(i) ∼ p(x|z(i)).

The generative framework endows the CG framework with a truly predictive proba-
bility density in the sense of producing new fine-scale atomistic realizations, which,
when a(x) 6= A(z), can be utilized to estimate the observables depending on the
fine-scale resolution. The predictive distribution follows from a marginalization of
Equation 2.34:

p(x) =
∫
Mc

p(x, z) dz =
∫
Mc

p(x|z)p(z) dz. (2.35)

We parametrize the densities with θcf and θc and thus, denote the parametrized
probability distributions as p(x|z, θcf) and p(z|θc).4 The parameter vector
θ = {θcf, θc} summarizes all parameters used in the generative model.

We are interested in comparing the previously introduced relative entropy CG
procedure with the approach proposed in this work. Therefore, we start from an in-
formation theoretic viewpoint in optimizing the generative distribution p(x|θ). The
KL divergence5 quantifies the difference between the target PDF ptarget(x) (which is
the fine-scale Boltzmann distribution ptarget(x) ≡ pf(x)) and the generative model
p(x):

DKL
(

ptarget(x)‖p(x|θ)
)
= −

∫
Mf

ptarget(x) log
p(x|θ)

ptarget(x)
dx

= −
∫
Mf

ptarget(x) log p(x|θ) dx

+
∫
Mf

ptarget(x) log ptarget(x) dx.

(2.36)

This equation provides an objective function that is minimized in identifying the
optimal parametrization θKL = arg minθ DKL

(
ptarget(x)‖p(x|θ)

)
.

Minimizing the KL divergence in Equation 2.36 is the same as maximizing the
component

∫
Mf

ptarget(x) log p(x|θ) dx. One can show, by approximating the integral
empirically with

1
N

N

∑
i=1

δ(x− x(i)) log p(x|θ)

4To meet the guidelines for a journal, the notation p(x|z, θcf) and p(z|θc) was modified to pθcf (x|z)
and pθc (z) and both forms will be used interchangeably in this thesis.

5The KL divergence is one of many metrics from the family of α divergences for quantifying the
closeness between two PDFs. See Refs. [376–378] for a more in-depth consideration.
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with samples x(i) ∼ ptarget(x), that maximizing the aforementioned empirical esti-
mator is the same as, up to the multiplicative constant 1/N, maximizing the mar-
ginal log-likelihood of p(xDN |θ) with a given dataset xDN = {x(i)}N

i=1:

log p(xDN |θ) =
N

∑
i=1

log p(x(i)|θ)

=
N

∑
i=1

log
∫
Mc

pθcf(x(i)|z(i))pθc(z
(i)) dz(i),

(2.37)

since p(xDN |θ) = ∏N
i=1 p(x(i)|θ). Equation 2.37 involves the observed fine-scale

atomistic description x(i) and the corresponding random variable of the latent vari-
able z(i), which we interpret as a lower-dimensional pre-image of the observed atom-
istic configuration x(i). The maximum likelihood (ML) estimate arises by maximiz-
ing log p(xDN |θ) [379, 380]:

θML = arg max
θ

{
log p(xDN |θ)

}
. (2.38)

Compared to regarding the optimization from an information theoretic viewpoint,
as introduced in Equation 2.36, the log-likelihood in Equation 2.37 can be embedded
in a Bayesian framework. Thus, prior information p(θ) can be included, which leads
to the maximum a posteriori (MAP) estimate [381]:

θMAP = arg max
θ

{
log p(xDN |θ) + log p(θ)

}
. (2.39)

The posterior distribution of the model parametrization p(θ|xDN ) is relevant for
propagating uncertainties to observables. It is expressed by applying Bayes’ rule:

p(θ|xDN ) =
p(xDN |θ)p(θ)

p(xDN )

=
∏N

i=1

(∫
Mc

pθcf(x(i)|z(i))pθc(z
(i)) dz(i)

)
p(θ)

p(xDN )
.

(2.40)

The posterior p(θ|xDN ) for interesting systems is intractable but approximation meth-
ods are discussed in Sections 2.6 and 2.5.4. The parameter credibility after having
seen data xDN is represented as a posterior density and is propagated to predictions
with predictive posterior p(x|xDN ), which involves the marginalization of hidden
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z(i)

θc

x(i)

θcf

N

FIGURE 2.1: Representation as a probabilistic graphical model.

variables z and parameters θ:

p(x|xDN ) =
∫

p(x|θ)︸ ︷︷ ︸
Equation 2.35

p(θ|xDN ) dθ

=
∫ (∫

p(x, z|θ) dz
)

p(θ|xDN ) dθ

=
∫ (∫

p(x|z, θcf)p(z|θc) dz
)

p(θ|xDN ) dθ

=
∫ ∫

p(x|z, θcf)p(z|θc)p(θ|xDN ) dz dθ.

(2.41)

This equation is concisely represented in Figure 2.1 as a directed graphical model. It
enables the application of the inference models as graphical models, as discussed in
Refs. [372, 382].

As well as generating atomistic representations x(i), Equation 2.41 is employed
for efficiently approximating expectation values of observables, as introduced in
Equation 2.19, by replacing the reference fine-scale Boltzmann distribution ptarget(x)
with the predictive distribution p(x|xDN ):

Eptarget(x) [a(x)] ≈ Ep(x|xDN ) [a(x)]

=
∫

a(x)p(x|xDN ) dx

=
∫

a(x)
(∫

pcf(x|z, θcf)pc(z|θc)p(θ|xDN ) dz dθ

)
dx

=
∫ (∫

a(x)pcf(x|z, θcf)pc(z|θc) dz dx
)

p(θ|xDN ) dθ

=
∫ (∫

a(x)pcf(x|z, θcf)pc(z|θc) dz dx
)

︸ ︷︷ ︸
â(θ)

p(θ|xDN ) dθ

=
∫

â(θ)p(θ|xDN ) dθ.

(2.42)

Clearly, the estimator Ep(x|xDN )[a(x)] is an approximation to Eptarget(x)[a(x)], since we
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use finite data and imply models for the distributions. However, the above expres-
sions incorporate the aforementioned approximations in terms of the posterior den-
sity p(θ|xDN ), which are propagated through the observable estimator â(θ). Given
a set of parameters θ(i) sampled from p(θ|xDN ), the predictive estimator â(θ(i)) pro-
vides the corresponding observable. One can either compute the expected value of
â(θ), as indicated in the last line of Equation 2.42, or present the uncertainty as cred-
ible intervals around the MAP or ML estimate [383, 384]. The latter would imply
replacing p(θ|xDN ) with δ(θ− θMAP/ML).

As we discussed in Section 2.3.1, a Bayesian approach has several advantages.
Thus, we address in the following section Bayesian inference algorithms that facili-
tate the drawing of conclusions about the latent variables z and estimating the (ap-
proximate) posterior distribution p(θ|xDN ), which is utilized in making predictions
and in uncertainty quantification.

2.5 Inference

In the following, we discuss methods facilitating inference in latent variable mo-
dels. Without loss of generality, we focus on the model introduced in Section 2.4
but collective approaches are applicable to any latent variable models. Note that the
seminal work is Ref. [357].

2.5.1 Point-based approximations: ML and MAP

Point-based ML and MAP estimates are the simplest way to approximate the pos-
terior p(θ|xDN ). They avoid the computationally expensive integration needed to
obtain the fully predictive posterior of Equation 2.41. In latent variable models, we
usually have a set of observed data xDN = {x(i)}N

i=1 and a set of hidden variables
zDN = {z(i)}N

i=1, which gives rise to the observed dataset xDN through the generative
model. The observed and latent variables are probabilistically connected through
the parameters θ. This leads to the marginal log-likelihood, Equation 2.37:

log p(xDN |θ) =
N

∑
i=1

log p(x(i)|θ) =
N

∑
i=1

log
∫
Mc

p(x(i)|z(i), θcf)p(z(i)|θc) dz(i) .

The log-likelihood is a function of the model parameters θ given the observed data
xDN :

L(θ; xDN ) ≡ log p(xDN |θ). (2.43)

For non-trivial densities, the hidden variables and thus, the induced probabilistic
dependency between model parameters, latent variables, and observables makes di-
rect optimization of the marginal (log-)likelihood in Equation 2.43 intractable. Every
change to θ would require solving the computationally prohibitive integral∫

Mc

p(x(i)|z(i), θcf)p(z(i)|θc) dz(i)
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for every datum x(i).
The maximization of L(θ; xDN ) can be simplified by introducing a set of auxiliary

distributions {qx(i)(z
(i))}N

i=1, which allows us to apply Jensen’s inequality [385]. Each
element of the summation in the marginal log-likelihood can be lower bounded:

L(θ; xDN ) =
N

∑
i=1

log
(∫

p(x(i), z(i)|θ) dz(i)
)

=
N

∑
i=1

log

(∫
qx(i)(z

(i))
p(x(i), z(i)|θ)

qx(i)(z(i))
dz(i)

)
(2.44)

≥
N

∑
i=1

(∫
qx(i)(z

(i)) log
p(x(i), z(i)|θ)

qx(i)(z(i))
dz(i)

)
︸ ︷︷ ︸

≡F(q
x(i)

(z(i)),θ;x(i))

=
N

∑
i=1
F
(

qx(i)(z
(i)), θ; x(i)

)
= F

(
qxDN (z), θ; xDN

)
, (2.45)

with qxDN (z) = ∏N
i=1 qx(i)(z

(i)), which refers to the whole set of free distributions,
{qx(i)(z

(i))}N
i=1. Thus far, we have not specified these free distributions and they will

have an important role, especially for the physical interpretation of latent variables.

Expectation maximization

An iterative scheme alternating between an expectation step (E step) and a max-
imization step (M step) was introduced by Refs. [386, 387]. The expectation maxi-
mization (EM) procedure produces distributions {qx(i)(z

(i))}N
i=1 given a current set of

model parameters θ(i) (E step) and then maximizes the lower bounds and thus, the
marginal log-likelihood, for a given set of distributions {qx(i)(z

(i))}N
i=1 with respect

to θ (M step). Indicating with t the iteration of a combined EM step and assuming
some initial values for the parameters θ(t) at t = 0, we can write:

• E step: Maximize the lower bound F (qxDN (z), θ(t); xDN ) with respect to every
distribution over the latent variables qx(i)(z

(i)) given the current θ(t) to obtain
q(t+1)

x(i)
(z(i)):

q(t+1)
x(i)

(z(i))← arg max
q

x(i)

F
(

q(t)
x(i)

(z), θ(t); xDN
)

, ∀i ∈ {i, . . . , N}. (2.46)
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• M step: Maximize the lower bound F (qxDN (z), θ(t); xDN ) with respect to θ

given the posterior over the latent variables q(t+1)
xDN

(z):

θ(t+1) ← arg max
θ

F
(

q(t+1)
xDN

(z), θ; xDN
)

(2.47)

= arg max
θ

N

∑
i=1

(∫
qx(i)(z

(i)) log p(x(i), z(i)|θ) dz(i)
)

. (2.48)

The optimal distributions qopt
x(i)

(z(i)) are obtained when they equal the true condi-
tional posterior distribution over the latent variables z(i) given the observation x(i):

q(t+1), opt
x(i)

(z(i)) = p(z(i)|x(i), θ(t)), ∀i ∈ {i, . . . , N}
∝ p(x(i)|z(i), θ

(t)
cf )p(z(i)|θ(t)c ).

(2.49)

Using the expression q(t+1), opt
x(i)

(z(i)) from Equation 2.49 and by replacing the cor-
responding terms in Equation 2.44, we can prove that the inequality becomes an
equality (with a tightened lower bound), i.e.:

F
(

q(t+1), opt
xDN

(z), θ(t); xDN
)
=

N

∑
i=1

log p(x(i)|θ(t)) = L(θ(t); xDN ). (2.50)

The full proof for Equation 2.50 and further details are provided in Ref. [357]. Ob-
taining the full posterior distribution over latent variables is computationally pro-
hibitive and the approximation of the actual posterior in Equation 2.49, with some
statistics, suffices in general.

In general and also in the context of this work, the posterior distributions{
p(z(i)|x(i), θ)

}N

i=1

are analytically intractable due to the interdependence of the latent variables, as
discussed in Refs. [388–391]. To circumvent the intractable computation of the true
posterior p(z(i)|x(i), θ), we follow two approaches, one of which includes Markov
chain Monte Carlo (MCMC) methods and the other variational Bayesian approaches.

Expectation maximization with MCMC E step

The M step requires the maximization of the expression in Equation 2.48:

θ(t+1) ← arg max
θ

N

∑
i=1

(∫
qx(i)(z

(i)) log p(x(i), z(i)|θ) dz(i)
)

.

Instead of attempting to solve the above integration directly, one can introduce an
approximate version of it. An approximate estimator of the aforementioned integral
with a finite set of mt samples from the posterior over the hidden variables z(i,j) ∼
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p(z(i)|x(i), θ(t)) takes the form

∫
qx(i)(z

(i)) log p(x(i), z(i)|θ) dz(i) ≈ 1
mt

mt

∑
j=1

log p(x(i), z(i,j)|θ). (2.51)

Clearly, the quality of such approximate estimators depends on the number of (ef-
fective) samples mt and the quality of the sample set in the sense of the induced
correlation between subsequent samples since we rely on MCMC rather than inde-
pendent and identically distributed (iid) MC samples [392–394]. Relatively small
changes to θ(t) offer the potential to reuse the samples obtained from the predeces-
sor of the current EM step. The population of given samples can be re-weighted
to best approximate the posterior over latent variables of the current step t instead
of t− 1 by importance sampling [395]. There are even more advanced and adaptive
sampling schemes, including annealing, such as adaptive sequential MC approaches
[205, 396]. MC methods will be discussed in more detail in Section 2.6.

Variational expectation maximization

Instead of introducing an E step to approximate the true posterior over latent vari-
ables by sampling z(i,j) ∼ p(z(i)|x(i), θ(t)), we can use a variational approach that
constrains the auxiliary distribution qxDN (z) and that stems from a particular para-
metrized family of distributions such that expectation values in the lower bound
F (qxDN (z), θ; xDN ) can be simplified, for example, by utilizing sufficient statistics
[357]. The variational E step does not attempt to obtain the exact posterior distribu-
tions p(z(i)|x(i), θ(t)) but distributions from a constrained family that resemble the
exact posterior distributions [357]. We reformulate the lower bound:

F (qxDN (z), θ; xDN )

=
N

∑
i=1

∫
qx(i)(z

(i)) log
p(x(i), z(i)|θ)

qx(i)(z(i))
dz(i)

=
N

∑
i=1

∫
qx(i)(z

(i)) log
p(z(i)|x(i), θ)p(x(i)|θ)

qx(i)(z(i))
dz(i)

=
N

∑
i=1

∫
qx(i)(z

(i)) log p(x(i)|θ) dz(i) +
∫

qx(i)(z
(i)) log

p(z(i)|x(i), θ)

qx(i)(z(i))
dz(i)

=
N

∑
i=1

log p(x(i)|θ)− DKL

(
qx(i)(z

(i))‖p(z(i)|x(i), θ)
)

.

(2.52)

According to Ref. [357] and from Equation 2.52, maximizing the lower bound
F (qxDN (z), θ; xDN ) with respect to all qx(i)(z

(i)) is equivalent to minimizing the KL
divergence between the variationally approximate posterior qx(i)(z

(i)) and the exact
posterior p(z(i)|x(i), θ). The KL divergence is greater than or equal to zero if and only
if qx(i)(z

(i)) = p(z(i)|x(i), θ). In the latter case, the lower bound F (qxDN (z), θ; xDN )

gets “tight” and equals the marginal log-likelihood log p(xDN |θ). In the following M
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step, the parameters are optimized such that F (qxDN (z), θ; xDN ) is maximized given
the current variational posterior distributions qx(i)(z

(i)).
The minimization of DKL(qx(i)(z

(i))‖p(z(i)|x(i), θ)) and thus, the maximization of
the lower bound F (qxDN (z), θ; xDN ) with regards to all qx(i)(z

(i)) becomes a mini-
mization or maximization of the respective quantities with respect to the parame-
trization of the variational posterior distributions. We can introduce a set of inde-
pendent parameters φ(i) ∈ Rdφ for each datum x(i) and summarize all parameters
defining the variational posterior distributions with Φ = {φ(i)}N

i=1. Then we write
for the posterior belonging to a particular parametrized family [397, 398]6:

qx(i)(z
(i)) = qx(i)(z

(i)|φ(i)), ∀i ∈ {1, . . . , N}. (2.53)

By utilizing the parametrized posterior in Equation 2.53, the E step translates to
maximizing the lower bound F (Φ, θ; xDN ), which depends implicitly on qxDN (z|Φ)

through Φ with respect to the variational parameters Φ:

• E step: Update the variational parameters with:

Φ(t+1) ← arg max
Φ

F
(

Φ(t), θ(t); xDN
)

. (2.54)

Thereafter, the updated posterior distributions are obtained by utilizing the
updated set of parameters Φ(t+1): qxDN (z|Φ(t+1)). The expectation values
needed to compute the lower bound

N

∑
i=1

∫
qx(i)(z

(i)|φ(t+1))p(x(i), z(i)|θ) dz(i)

are either analytically tractable or we can leverage efficient MCMC approxi-
mations of F (Φ(t+1), θ(t); xDN ) due to the choice of a particular family of dis-
tributions for the posterior, which we can easily sample from.

• M step: Update the model parameters θ:

θ(t+1) ← arg max
θ

F
(

Φ(t+1), θ; xDN
)

. (2.55)

We investigate in this work different parametrization strategies for the approx-
imate posterior distributions over the latent variables qx(i)(z

(i)|φ(i)), which are dis-
cussed in Section 2.5.5.

Variants of the EM algorithm (for example, with multiple M steps per E step or in
which a particular subset of latent variables and approximate posterior distributions
are updated in the E step followed by a full update in the M step) could improve the
efficiency. For discussions on potent variants of the EM algorithm refer to Refs. [399,
400].

6Both forms of notation for the variational posterior, qx(i) (z
(i)|φ(i)) and qφ(i) (z(i)), have the same

meaning and are employed equivalently in this work.
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2.5.2 Variational Bayesian inference

As partly introduced in Section 2.5.1 for an EM algorithm with a variational E step,
variational Bayesian inference transforms cumbersome inference tasks into an opti-
mization problem by defining a flexible family of distributions over latent variables
and treats parameters also as hidden variables [382, 401, 402]. Variational methods
can yield the exact posterior distribution over latent variables. However, such meth-
ods result in an approximate posterior because usually the family of distributions
we are optimizing is restricted, for example, by limiting them to quadratic functions
or distributions governed by a linear combination of a fixed set of basis functions,
or by assuming independence between the posterior on latent variables and model
parameter posterior distributions in full Bayesian inference.

Developments of versatile variational inference algorithms for distributions from
the conjugate exponential family are documented in Refs. [403–405]. There is an in-
creasing degree of automation of variational inference, resulting in black-box varia-
tional inference [406] and variational Bayesian autoencoders [235, 407] and relying
on stochastic backpropagation and reparametrization [408] of the variational poste-
rior.

Extensions, such as stochastic variational inference, address the efficiency of vari-
ational inference by utilizing subsamples of the dataset xDN for inferring latent vari-
ables in combination with stochastic optimization methods [409]. The success of
stochastic approaches is significantly driven by the capabilities of the stochastic opti-
mization methods employed for coping with noisy, but unbiased, gradient estimates
of the (evidence) lower bound F (Φ, θ; xDN ) [410–412].

As stated in Ref. [356], the only difference from the variational EM introduced in
Section 2.5.1 is the set of latent variables, which, in variational Bayesian approaches,
encompasses the model parameters θ. The corresponding marginal log-likelihood
log p(xDN ) is

log p(xDN ) =
N

∑
i=1

log
∫

p(x(i)|z(i), θcf)p(z(i)|θc)p(θ) dz(i) dθ. (2.56)

The prior factorizes over the model parametrization with p(θ) = p(θc)p(θcf), where
θ = {θcf, θc}. In the probabilistic model defined in Equation 2.56, Ref. [409] distin-
guishes between local and global latent variables using conditional dependencies.
The latent variables z(i) giving rise to the observed atomistic configurations x(i) are
local hidden variables, since they are conditionally independent of the latent vari-
ables zDN

\i and observations xDN
\i .7 Therefore, the complete joint likelihood is

p(x, z, θ) = p(θ)
N

∏
i=1

p(x(i), z(i)|θ), (2.57)

7(·)DN
\i denotes the set of variables {(·)(1), . . . , (·)(i−1), (·)(i+1), . . . , (·)(N)}.
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which gives rise to the posterior distribution

p(z, θ|x) = p(x, z, θ)∫
p(x, z, θ) dz dθ

. (2.58)

We started our discussion with the marginal log-likelihood log p(xDN ) but now with
θ being a random variable itself:

log p(xDN ) = log
∫

p(x, z, θ) dz dθ

= log
∫

q(z, θ)
p(x, z, θ)

q(z, θ)
dz dθ

≥
∫

q(z, θ) log
p(x, z, θ)

q(z, θ)
dz dθ

= F (q(z, θ); xDN ).

(2.59)

A decomposition can be obtained in a similar fashion, as shown in Equation 2.52,
with:

log p(xDN ) = F (q(z, θ); xDN ) + DKL

(
q(zDN , θ)‖p(z, θ|xDN )

)
. (2.60)

The evidence lower bound F (q(z, θ); xDN ) is maximized, which, thus, minimizes
DKL(q(zDN , θ)‖p(z, θ|xDN )). The minimization of the aforementioned KL divergence
implies that the variational posterior q(zDN , θ) comes close in terms of the KL metric
to the exact posterior p(z, θ|xDN ). Based on mean-field theory, which originated in
statistical physics [413, 414], each latent variable is treated independently and the
corresponding approximate posterior distribution has its own parameter [409]:

q(z, θ|λ, Φ) = q(θ|λ)
N

∏
i=1

q(z(i)|φ(i)), (2.61)

with the free parameters λ and Φ =
{

φ(i)
}N

i=1
.

All these methodologies rely on the computation of gradients of the lower bound
∇{Φ,θ}F (Φ, θ; xDN ), which we will address directly in the specific model setting in
the publications based on this thesis [375, 415] and in Chapters 4 and 6 of this work.

This section and Section 2.5.1 are mostly based on the seminal works [357, 416],
which we highly recommended for more insights on variational methods for Baye-
sian learning.

2.5.3 Prior specification

This work employs flexible and potentially overparametrized models. The training
of overparametrized models can lack robustness since they can yield unbounded
likelihoods and ill-posed optimization problems [417, 418]. The Bayesian response
to regularization in deterministic settings is to use functional priors, which we will
exploit for regularizing the log-likelihood [419, 420]. The prior distribution occurs
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in an additive fashion in the log-likelihood, as first introduced in Equation 2.39:

arg max
θ

{
log p(xDN |θ) + log p(θ)

}
.

The primary motivation for employing such functional priors is to reveal parsimo-
nious physical insights. In addition to that, we employ functional sparsity-inducing
priors for enhancing stability during training by reducing the number of parameters
to only those needed for explaining the data xDN [417].

Automatic relevance determination (ARD) [421] will be employed in this work,
which depicts a hierarchical prior using two components:

p(θ|τ) ≡∏
k
N (θk|0, τ−1

k ), τk ∼ Gamma(τk|a0, b0). (2.62)

This hierarchical prior implies that the prior on θ factorizes with independent Gauss-
ian distributions with zero mean and precision τk. In the hierarchical extension for
the ARD prior, τk is modeled with a Gamma distribution, which is conjugate to
the Gaussian distribution. The marginal prior p(θk) has a heavy-tailed Student’s
t-distribution. A Student’s t-distribution favors θk close to zero and thus, induces
sparsity.

To optimize the lower bound F , which encompasses now the additive log-prior
contribution, gradients with respect to θ need to be estimated. This can be done by
regarding τk as a latent variable and performing an inner-loop EM step [422]:

• E step: Estimate

Ep(τk |θk) [τk] =
a0 +

1
2

b0 +
θ2

k
2

. (2.63)

• M step: Maximize
∂ log p(θ)

∂θk
= −Ep(τk |θk) [τk] θk. (2.64)

Moreover, the second derivative of the log-prior with respect to θ is

∂2 log p(θ)
∂θk∂θl

=

−Ep(τk |θk) [τk] , if k = l,

0, otherwise.
(2.65)

The hierarchical prior contains the hyperparameters a0 and b0, which need to be
specified. Based on Ref. [421], in ARD, a0 = b0 = 1.0× 10−5.

2.5.4 Approximate Bayesian inference using Laplace’s approximation

Compared to the approaches introduced in Section 2.5.2, the Laplace approximation
is an efficient way to obtain information about the distribution of θ around θMAP,
which are the maximum a posteriori estimates of the parameters θ. Determining the



2.5. Inference 47

full posterior distribution of the model parameters p(θ|xDN ) comes with the compu-
tational burden of determining normalization constants. Therefore, we now estimate
the approximate posterior over the model parameters θ using Laplace’s method
[423], which was rediscovered as an efficient approximation method for quantify-
ing uncertainties of neural network weights [424].

The Laplace approach allows us to approximate the exact posterior distribution
with a Gaussian centered in the vicinity of the ML or MAP optimum. The Gaussian
posterior is defined with the mean at µL = θMAP and a covariance matrix defined
as the negative inverse of the Hessian of the log-posterior in the mode θMAP. We
assume in this work a covariance matrix with diagonal structure: SL = diag(σ2

L).
Thus, we can write for the approximate posterior

p(θ|xDN ) ≈ N
(
µL, SL = diag(σ2

L)
)

, (2.66)

where
µL = θMAP, (2.67)

and the diagonal entries of S−1
L are

σ−2
L,k = −∂2F (φ, θ; xDN )

∂θ2
k

∣∣∣∣
θMAP,φMAP

+ Ep(τk |θk)[τk]. (2.68)

The final term in Equation 2.68, Ep(τk |θk)[τk], stems from the prior employed in Equa-
tion 2.65. The mean and the variance in Equations 2.67 and 2.68 are used after the
last iteration upon convergence of the lower boundF (φ, θ; xDN ) in the optimization.

2.5.5 Approaches for model parametrization

The introduced inference tools are general and widely applicable in developing pre-
dictive CG methodologies. Thus far, we have not discussed the specifics of the im-
plementations and gradient computation, which are specific to the model. Since
we explore a variety of approaches with different parametrization strategies for in-
volved distributions, we discuss the particular objectives in the corresponding chap-
ters and related papers, which present the novel contributions. However, the fol-
lowing is an overview of the approaches we use to model a predictive distribution
p(x|xDN ).

The proposed CG method has two components: (1) the hidden generator of CG
variables p(z|θc) and (2) the generative mapping, which provides predictions of ob-
servable atomistic configurations, p(x|z, θcf).

The following strategies ensure that the models are flexible and can cope with
small data to reveal physical insights:

(i) Provide rich and flexible descriptions from the beginning and automatically
select those parameters required for describing reference atomistic trajectories
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well. Parameters that are less significant are automatically turned off during
model learning. This avenue is followed in Chapters 3 and 5.

We realize this in Chapter 3 by employing a rich set of basis functions describ-
ing p(z|θc) ∝ e−βU(z;θc), with the CG potential expressed as a linear combina-
tion of basis functions φ(z):

U(z; θc) = θT
c φ(z), (2.69)

and automatically set components in θc that are not required to zero. The
proposed methodology does not require any specific prerequisite modeling
knowledge. As we propose a fully Bayesian framework, we consistently search
for sparsity implied by functional priors using methods such as ARD [421].
For a more detailed discussion of different sparsity-favoring priors, we refer
to Refs. [420, 425]. Sparsity priors naturally induce sparse solutions without
actively fixing any parameters to zero, which would be impractical. The prior
competes with the available data and allows us to switch previously redun-
dant parameters on again if they turn out to be required for explaining the
data xDN .

In addition to providing a rich set of basis functions, in Chapter 5 we explore
the possibilities of employing deep neural networks [426, 427] to reveal sparse
features. This can be done by equipping p(x|z; θcf) with a flexible neural net-
work description, for example, a Gaussian with mean and variance output
from a flexible deep neural network:

p(x|z; θcf) = N (x; µθ
µ
cf
(z), SθS

cf
), (2.70)

where
µθ

µ
cf
(z) = f µ

θ
µ
cf
(z) (2.71)

is a non-linear mapping z 7→ f µ

θ
µ
cf
(z) ( f µ

θ
µ
cf

: Rnc 7→ Rnf) parametrized by an
expressive multilayer perceptron [428–430].

(ii) The opposite approach to implementing sparse methods, while following the
same overall goal of developing interpretable learning strategies for CG mo-
dels, is as follows. Start with a simple model for the distributions, learn the
parametrization given the current model structure until convergence. The con-
vergence criterion is the lower bound F , which provides a valuable indication
[431, 432]. Subsequently, add complexity and optimize the new model with
enhanced flexibility given the data xDN until convergence. This can be realized
by providing a model for p(z|θc) ∝ e−βU(z;θc) with the CG potential expressed
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as a linear combination of basis functions, as in Equation 2.69, where the vec-
tors are

θc =


θ1
...

θL

 and φ(z) =


φ1(z; λ1)

...
φL(z; λL)

 . (2.72)

This linear combination allows us iteratively to add basis functions φi(z; λi)

from a family of basis functions (e.g., radial basis functions), which is pa-
rametrized with λi. This even enables us to add the optimal basis function
φi(z; λ

opt
i ) by maximizing an information theoretic criterion we develop with

respect to λi. After identifying the optimal λ
opt
i , it is fixed, and we proceed

with the optimization of the associated parameter θi and previous θc (associ-
ated with previously added features) such that the lower bound increases. We
present this strategy in Chapter 4.

The sparse solutions, as we will show, are beneficial for dealing with only a few
data points N compared to the dimension of x. Expediting the available evidence,
based on limited data, naturally leads to descriptions that reveal relevant physics,
which is the sparsest solution itself.

Beyond the discussion above, we provide adaptive models once in the mapping
p(x|z; θcf) and once in the coarse description p(z; θc). In the latter case, we seek
to identify sparse features correlated with physical insights in terms of the interac-
tions of the CG potential expressed by U(z; θc) given a probabilistic simple (but still
parameter-dependent) coarse-to-fine mapping p(x|z; θcf). We discuss this strategy
in Chapters 3 and 4. In the opposite case, with an adaptive and flexible p(x|z; θcf)

and simple p(z; θc), we seek to reveal insights in terms of expressive mappings that
reveal slow coordinates or CVs of the reference system. The identified CVs provide a
simple description of the complex observed trajectories xDN (simple, since CG vari-
ables are generated from a simple p(z; θc); thus, they cannot encode the complex
structure in z). We present the identification of slow coordinates or CVs that depict
a parsimonious description of complex physics in Chapters 5 and 6.

2.5.6 Outline

Finally, we suggest the consideration of recent progress on invertible generative
distributions p(x|xDN ), which depict an appealing framework for facilitating vari-
ational inference by circumventing the intractable marginalization over the latent
variables:

p(x) =
∫

p(x|z)p(z) dz.

Normalizing flow based approaches also belong to the family of generative models
and rely on a change of variables for transforming simple distributions into rich
expressive ones by the aforementioned mappings. Reference [433] reviews of nor-
malizing flow based approaches.
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Normalizing flow based generative models rely on simple distributions over la-
tent variables z, whereas complexity is induced by a series of bijective mappings that
add expressivity in the generative process px(x) [434]. Latent variables z(i) ∼ pz(z)
are mapped to the corresponding observable variables x(i) with a bijective function
f : x→ z and its inverse function g = f−1 : z→ x [435]. The mapping function must
be bijective and thus, invertible, which implies dim(z) = dim(x). With the change
of variables, a simple distribution p(z) is transformed into a complex distribution
px(x), which gives rise to the observed data xDN :

px(x) = pz( f (x))
∣∣∣∣det

(
∂ f (x)
∂xT

)∣∣∣∣ . (2.73)

Here ∣∣∣∣det
(

∂ f (x)
∂xT

)∣∣∣∣
is the determinant of a square matrix A and ∂ f (x)/∂xT is the Jacobian of f and x. In
the above discussions on expectation maximization (Section 2.5.1) and variational
inference (Section 2.5.2), the intractable marginalization over the latent variables
p(x) =

∫
p(x|z)p(z) dz caused most of the computational problems, which nor-

malizing flows circumvent by employing Equation 2.73.
However, the challenging aspect in normalizing flows is constructing expressive

functions, for example, a composition of neural network layers: f (x) = fK ◦ · · · ◦ f2 ◦
f1(x), which offer the computation of reasonably tractable determinants of the Jaco-
bian [435, 436]. RealNVP [238, 437] and GLOW [239] are attractive and promising
approaches for constructing such efficient bijective mappings. In particular, nor-
malizing flows provide in the context of generative models an explicit definition
of likelihood, which allows us to use existing inference algorithms for learning the
parameters [435].

Further approaches for implicit likelihood models are generative adversarial net-
works (GANs), which have a two-player min-max objective [438]. This approach has
had promising results in image and video segmentation and even generation, and
is also used in physics [439]. There are many variants of GANs. For reviews, see
Refs. [440, 441].

2.6 Monte Carlo methods

A wide range of problems in different scientific disciplines requires the computation
of integrals of the form:

I =
∫

g(x)π(x) dx, (2.74)

where x is a random variable distributed according to π(x) and x is high dimen-
sional. In our work, such integrals occur when computing the expected values of
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observables (Section 2.1.4) or when estimating expectations in inference tasks (Sec-
tion 2.5) where π(x) is the posterior distribution over hidden variables. MC methods
overcome two major obstacles:

1. Observables a(x) are complex functions and a vast amount of computational
effort is required to evaluate their expected values. We seek to obtain unbiased,
but eventually noisy, approximations to such expectations [295].

2. In many cases, for example, in variational inference, the computation of the
normalization (or the model evidence) for obtaining posterior distributions is
prohibitive. MC methods allow sampling from unnormalized distributions.

Moreover, an optimization problem can be reformulated as a MC problem for
some temperature T and the function to be optimized denoted as h(x):

πT(x) ∝ e−h(x)/T. (2.75)

Then, with sufficiently small T, most states x(i) are sampled in the vicinity of the
minimum of h(x) [442].

The theory beind MC methods suggests an approximation of the the integral in
Equation 2.74 by a finite sum with a limited set of independent samples x(l) ∼ π(x):

ÎL =
1
L

L

∑
l=1

g(x(l)). (2.76)

The law of large numbers states that the approximate estimator ÎL in this equation
converges to the exact value of the integral I:

lim
L→∞

ÎL = I, (2.77)

in the limit of large numbers of independent samples representing π(x). Very no-
table is the convergence rate of the approximate estimator ÎL [442]:

√
L( ÎL − I)→ N (0, σ2), (2.78)

where
σ2 = var

[
Î
]
=

1
L

Eπ(x)

[
(g−E [g])2

]
,

which is independent of the dimension of x [356]. Thus, using a very few samples
can result in a sufficient estimate of the expected value provided they are of “good”
quality, which means independent. However, most sampling schemes provide cor-
related samples so that the effective sample size (ESS) translates the apparent num-
ber of samples into the number of independent ones [443]. From the perspective of
signal processing, a sample autocorrelation provides insights about the quality of
the samples utilized [444] for the MCMC methods that are introduced later.
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2.6.1 Importance sampling

Assume that we are interested in computing µ = Eπ(x)[g] =
∫
X g(x)π(x) dx with

the PDF π(x) defined on X ⊂ Rdx . Further, suppose we can evaluate π(x) at any x
but we are not able to sample from π(x). A vanilla MC approach could uniformly
discretize X and then compute g(x)π(x) at the grid points to yield the estimator:

µ ≈
L

∑
l=1

g(xl)π(xl). (2.79)

The terms in the above summation increase exponentially as the dimension dx in-
creases. Assuming the PDF π(x) has the probability mass distributed in narrow
regions of X , most evaluations of π(x) will yield zero, whereas interesting regions
with high probability mass, thus large π(x), could be missed. The idea, initially pro-
posed in Ref. [445], is that, to reduce the computational effort, the focus of sampling
should lie in regions of importance [442]. Areas of importance are those that yield
large absolute values of the product g(x)π(x) and thus, make a significant contribu-
tion to the sum in Equation 2.79.

Thus, we introduce a distribution q(x) that is easy to sample and obtain L sam-
ples x(l) ∼ q(x). An approximate estimator the integral of interest is

Eπ(x) [g] =
∫

g(x)π(x) dx

=
∫

g(x)
π(x)
q(x)

q(x) dx

≈ 1
L

L

∑
l=1

π(xl)

q(xl)
g(x(l)).

(2.80)

The term

rl =
π(xl)

q(xl)

in Equation 2.80 relates to the corrections for importance weights when sampling
from q(x) instead of π(x) while keeping all L samples in the sum of Equation 2.80.
The above discussion implies that the distributions are normalized. However, often
we are not able to compute the normalization constant. We denote with π̃(x) the
unnormalized part, which is normalized with the constant Zπ. Therefore, π(x) =

π̃(x)/Zπ and likewise q(x) = q̃(x)/Zq. Then the estimator becomes:

Eπ(x) [g] =
∫

g(x)π(x) dx

=
Zq

Zπ

∫
g(x)

π̃(x)
q̃(x)︸ ︷︷ ︸
≡r̃l

q(x) dx

≈ Zq

Zπ

1
L

L

∑
l=1

r̃l g(x(l)).

(2.81)
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Thus far we have not defined how to obtain an estimate of the ratio of normalizing
constants Zq/Zπ in Equation 2.81. This can be done by utilizing the same samples
{x(l)}L

l=1 with:

Zπ

Zq
=

1
Zq

∫
π̃(x) dx =

∫
π̃(x)
q̃(z)

q̃(z)
Zq︸ ︷︷ ︸

=q(x)

dx ≈ 1
L

L

∑
l=1

r̃l . (2.82)

By defining the normalized importance weights,

wl =
r̃l

∑L
k=1 r̃k

, (2.83)

a short version of the approximate integral estimator in importance sampling is

Eπ(x) [g] ≈
L

∑
l=1

wl g(x(l)), with x(l) ∼ q(x). (2.84)

Weighting samples is a relevant prerequisite for more advanced sequential Monte
Carlo (SMC) schemes, which is why importance sampling has been introduced here.
However, the direct applicability of importance sampling is limited by several draw-
backs:

• The success of importance sampling depends crucially on the closeness of q(x)
to the target distribution π(x). If π(x) is very concentrated, most weights rl

will be zero and the sum in Equation 2.82 is determined only by a small subset
of samples. For such cases, it is interesting for diagnostic purposes to estimate
the ESS:

ESS =
1

∑L
l=1
(
w2

l

) , (2.85)

which indicates the amount of samples the approximation of Eπ(x)[g] relies on
[446].

• Most problematic is when none of the samples x(l) falls into regions with large
rl g(x(l)). The variance in rl is still small in such cases and the ESS is close to
NL, which makes a reliable diagnosis challenging.

Reference [447] contains an extended chapter on importance sampling techni-
ques from a physical point of view plus a discussion of extensions to vanilla impor-
tance sampling.

2.6.2 Markov Chain Monte Carlo

Section 2.6.1 introduces importance sampling, which enables the approximation of
expected values. However, importance sampling gives poor results in case of high
dimensional x. This section discusses MCMC approaches, which provide a general
framework for sampling from a variety of densities.
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The word “chain” describes well the difference from MC methods. Here we de-
fine a distribution for sampling proposals that is conditionalized on the current state
x(t), q(x|x(t)). The subsequent samples x(1), x(2), . . . are form a Markov chain [356].
Since we need to sample from the proposal density q(x|x(t)), the chain should be
simple. The overall goal is to generate samples from π(x) = π̃(x)/Zπ where we can
evaluate π̃(x) for any x. The algorithm proceeds by drawing a potential candidate x′

from the proposal distribution q(x|x(t))8 and accept or reject the candidate based on
a criterion that depends on the particular implementation of the MCMC algorithm.

The early Metropolis algorithm [306] used symmetric proposal distributions with
q(x′|x∗) = q(x∗|x′). The proposal x′ is accepted for the new state x(t+1) with proba-
bility

A(x′, x(t)) = min
{

1,
π̃(x′)

π̃(x(t))

}
. (2.86)

Proposals that yield π̃(x′) > π̃(x(t)) are certainly kept. If the proposal gets accepted,
we set x(t+1) = x′ and t ← t + 1. If A suggests the rejection of the proposal x′, we
set x(t+1) = x(t) and t ← t + 1. The latter implies that we store copies of x(t) if the
proposal is rejected. This can be done also by weighting the sample to make stor-
age more efficient. The proposal distribution q is, in both cases, conditionalized on
x(t+1). For t → ∞, the distribution of samples x(t) tend to π(x) [356]. The set of
samples subsequently obtained, however, is not independent and exhibits correla-
tion between the samples. To circumvent this, one can discard most samples within
the sequence and keep only every mth sample.

For a Markov chain to converge, the distribution of interest π(x) must be invari-
ant under the transition function T(x, x(t)). For homogeneous Markov chains, with
the same T(x, x(t)) for each step t, the distribution is invariant if

π(x(t)) =
∫

x′
T(x(t), x′)π(x′) dx′. (2.87)

A restrictive criterion ensuring convergence of the Markov chain is called detailed
balance. It is a sufficient but not necessary condition:

π(x)T(x, x′) = π(x′)T(x′, x) (2.88)

This results in a reversible Markov chain. Independent of the initial distribution, as
t → ∞, the Markov chain must converge to the target distribution π(x). Ergodicity
means that the equilibrium distribution occurs for t → ∞. For a more detailed
discussion of convergence criteria, read Chapter 5.3 in Ref. [442] and Chapter 11.2.1
in Ref. [356].

8The literature often introduces a general transition function T(x, x(t)). A probability transition
function takes only non-negative values and

∫
T(x, x(t)) dx = 1.
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2.6.3 Metropolis–Hastings algorithm

Unlike Section 2.6.2, in which the proposal distribution was symmetric, the Metrop-
olis–Hastings MCMC method [448] is a generalization for asymmetric proposal dis-
tributions. Given a current state x(t), a proposal move x′ is drawn from q(x|x(t)).
For the Metropolis–Hastings update criterion, we must additionally incorporate the
reverse transition probability q(x(t)|x′):

A(x′, x(t)) = min

{
1,

π̃(x′)q(x(t)|x′)
π̃(x(t))q(x′|x(t))

}
. (2.89)

For a symmetric proposal distribution q(x(t)|x′) = q(x′|x(t)), the original Metropolis
acceptance probability can be recovered (Equation 2.86).

A further interesting MCMC sampling approach is Gibbs sampling, which pro-
vides samples of a subset of the complete random variable x at a time, for example,
x̃, of the distribution conditioned on all other values π(x̃|x\x̃). The sampling steps
are repeated either for a single component of the random variable x or a subset x̃.
The updated variables can change and can even be randomly selected from the ran-
dom variable vector x. The Gibbs sampling scheme [449] is a special case of the
Metropolis–Hastings algorithm.

2.6.4 Metropolis-adjusted Langevin algorithm

The Metropolis-adjusted Langevin algorithm (MALA) [450, 451] relies on the
Metropolis–Hastings acceptance probability for a proposed state x′, which was in-
troduced in Section 2.6.3. MALA differs in the way we obtain a proposal x′. It
incorporates gradient information, which increases efficiency in exploring the phase
space. It moves efficiently to regions of interest, that is, those with a high probability
mass. Therefore, with a given ratio of accepted and rejected samples, the mixing
of samples is improved compared to random walk Metropolis–Hastings. Random
walk proposals are governed by overdamped Langevin dynamics [452] that incor-
porate gradient information for the target distribution π(x). The Langevin stochastic
differential equation (SDE) is

dxt =
σ2

2
∇x log π(xt) dt + σdWt, (2.90)

where Wt corresponds to Brownian motion or a Wiener process. The discretized
version of the SDE follows from dt ≈ ∆t, dxt = x(t+1) − x(t), and dWt ≈

√
∆tzt, zt ∼

N (0, I):

x(t+1) = x(t) + ∆t
σ2

2
∇x log π(x) + σ

√
∆tzt, (2.91)

which leads to the proposal distribution:

q(x′(t+1)|x(t)) = N
(

x(t) +
σ2

2
∆t∇x log π(x(t)), σ2∆t

)
. (2.92)
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The proposal for the random walk x(t+1) in MALA, x′(t+1) is accepted with probabil-
ity

A(x′(t+1), x(t)) = min

{
1,

π(x′(t+1))q(x(t)|x′(t+1))

π(x(t))q(x′(t+1)|x(t))

}
. (2.93)

If the proposal is accepted, then we set x(t+1) = x′(t+1) otherwise x(t+1) = x(t).
The parameter σ needs to be specified and adjusted according to the desired ac-
ceptance/rejection ratio for proposal samples.

For further MCMC approaches relying on the Metropolis–Hastings criterion, see
the review in Ref. [453].

For distributions with a very dense probability mass separated into multiple
modes with high free-energy barriers, the aforementioned MCMC methods may
suffer because they could sample only a single mode with limited trail steps. In
theory, any MC method can explore the full phase space in an infinite number of
steps, which, in practice, is infeasible.

Advances in sampling methods led to hybrid MC methods, which translate sam-
pling from probability distributions into simulating a dynamic Hamiltonian system
by introducing fictitious momentum variables conjugate to the position x [454–457].
Interesting approaches for lowering the high free-energy barriers provide tempering
schemes that start initially at high temperatures, which allows the samples to mix
[458–460]. We highly recommend Ref. [461], as it provides an overview of Langevin
and Hamiltonian MC methods with powerful extensions.

2.6.5 Adaptive sequential Monte Carlo methods

In this work, we are interested in sampling complex high-dimensional random vari-
ables with multiple distinct modes. The SMC approach is an efficient method for
sampling of multimodal distributions since it efficiently samples a sequence of (un-
normalized) distributions exhibiting smooth transitions. The sequence of distribu-
tions could, for example, relate to a tempering scheme, which facilitates covering
multiple modes. There is also a sequence of slowly chaining distributions within
the stochastic optimization processes in variational inference. In variational infer-
ence, the parametrization of a distribution θk changes relatively slow in each step
and the absolute value of (θk+1 − θk)/θk is small. Each step in the SMC method is
embarrassingly parallelizable with respect to the particles involved [462–464].

A sequence of distributions can be generated by a tempering scheme. Tempering
implies starting with a high temperature (low inverse temperature β0) and sequen-
tially lowering the temperature to the target temperature (or target inverse temper-
ature βK = 1) [465–468]. The sequence is, thus, defined by the inverse temperatures
0 ≤ β0 ≤ · · · ≤ βk ≤ · · · ≤ βK = 1. The target distribution is π(x) = π̃(x)/Z. Then
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we can write the sequence of distributions in the following form:

πk(x|βk) =
1

Zk
eβk

≡−V(x)︷ ︸︸ ︷
log π̃(x), ∀k ∈ {1, . . . , K}. (2.94)

In the contexts in which we apply adaptive SMC, it is associated with small
changes to the governing parameters θk of a distribution:

πk(x|θk) =
1

Z(β, θk)
e−βV(x;θk). (2.95)

We have a set of N random samples (also interpreted as particles or replicas) at
step k with parameters θk denoted as {x(i)k }N

i=1, which approximate the distribution
πk(x|θk). In adaptive SMC, this set of particles {x(i)k }N

i=1 is updated based on a se-
quence of importance sampling, resampling, and rejuvenation steps [469]. Each of
the particles x(i)k contributes to the particle-based approximation of πk(x|θk) accord-
ing to its normalized weight w(i)

k :

πk(x|θk) ≈
N

∑
i=1

w(i)
k δ(x− x(i)k ). (2.96)

With particle-based SMC approaches, we can approximate expectations of a function
g(x) as,

Eπk(x|θk) [g(x)] ≈
N

∑
i=1

w(i)
k g(x(i)k ). (2.97)

The adaptive component in an adaptive SMC scheme comes from building an adap-
tive path between πk(x|θk) and πk+1(x|θk+1), which bridges the parameter incre-
ment. This step is relevant since the quality of sampling depends on the proximity
of the two distributions and a smooth transition between πk(x|θk) and πk+1(x|θk+1).
Adaptive SMC, therefore, constructs the intermediate auxiliary distributions:

π
γ
k (x|θ

γ
k ) ∝ π̃

γ
k (x|(1− γ)θk + γθk+1) , γ ∈ [0, 1]

= e−βV(x;θγ
k ),

(2.98)

where θ
γ
k = (1 − γ)θk + γθk+1. The control parameter γ ensures that there is a

smooth transition, which makes importance sampling applicable. In Ref. [205], the
intermediate steps are automatically adjusted to balance the efficiency and the over-
all accuracy of the proposed scheme. The number of intermediate steps for changing
γ is clearly problem dependent. We utilize in total S steps for approaching γ = 1
with 0 = γ1 < γ2 < · · · < γS = 1 and thus, ultimately θk+1 = θ

γS=1
k . The ESS con-

trols the adjustment of the intermediate step size (as introduced in Equation 2.85):

ESSγs
k =

1

∑N
i=1

(
w(i)

k,γs

)2 .
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The extremes of the ESS involve cases where the whole distribution is approximated
by only one sample or where the ESS equals N because the samples are uniformly
distributed in terms of the weights w(i)

k . When updating γs to γs+1, the ESS should
not change significantly since the affiliated distributions are similar. If changes
in the ESS for γs+1 compared to γs are noticeable, the corresponding increment
from γs to γs+1 should be reduced. The threshold in Ref. [205] was adopted with
ESSγs+1 ≥ ζ ESSγs , where ζ = 0.6. If the population {x(i)k }N

i=1 is far from representing
the distribution πk(x), which is indicated by the ESS dropping below ESSmin = N/2
[205], the existing samples are resampled by sampling a multinomial distribution
with the corresponding weights w(i)

k . After a potential resampling step, the new pop-
ulation rejuvenates by applying a MALA proposal distribution with q(x(i)k,s+1|x

(i)
k,s).

Algorithm 1 lists the steps.

Algorithm 1: Adaptive SMC algorithm

Input: s = 1, γ1 = 0, samples {x(i)k,s}N
i=1 approximating π

γ1
k (x|θγ1

k ) as defined
in Equation 2.98 and such that Equation 2.96 holds.

Output: New population {x(i)k,S}N
i=1 that approximates πk+1(x|θk+1).

1 while γs < 1 do
2 s← s + 1.

Reweighting and importance sampling:
3 Estimate updated population weights with

w(i)
k,s(γs) = w(i)

k,s−1

π
γs
k (x(i)s−1|θ

γs
k )

π
γs−1
k (x(i)s−1|θ

γs−1
k )

depending on the current adapted step γs.
4 Adjust γs ∈ (γs−1, 1] such that ESSs = ζ ESSs−1.

Resampling:
5 if ESSs ≤ ESSmin then
6 Resample utilizing a multinomial distribution with the current

weights w(i)
k,s(γs).

7 Rejuvenation:
8 Given the population, move according to an MCMC proposal and

acceptance step (in our case, we utilize MALA).
9 Utilize a MCMC proposal distribution q(x(i)k,s|x

(i)
k,s−1) to ensure the

invariance of π
γs
k under the Markov chain approach.

Update:
10 {

x(i)k,s

}N

i=1
←
{

x(i)k,s−1

}N

i=1
.
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2.7 Stochastic optimization

All inference tasks in this work translate to optimization problems in terms of the
model parameters θ and the parameters φ governing the approximate posterior
distributions over the latent variables [470, 471]. The gradients of the objective
F (Φ, θ; x(i))9 involve expectations of the complete log-likelihood log p(x(i), z(i)|θ).
We consider, for instance, the gradient with respect to the model parameters θ:

G(i)(θ) = ∇θF (Φ, θ; xi)

= ∇θEq
x(i)

(z(i)|φ(i))

[
log p(x(i), z(i)|θ)

]
.

(2.99)

The integral with respect to z(i) can be approximated by utilizing the MC methods
in Section 2.6 with Ĝ(i)(θ) ≈ G(i)(θ) and the corresponding approximate estimator:

Ĝ(i)(θ) = 1
M

M

∑
m=1
∇θ log p(x(i), z(i)m |θ), (2.100)

where samples are drawn with z(i)m ∼ qx(i)(z
(i)|φ(i)). Clearly the above approximate

estimator is unavoidably affected by noise. Stochastic optimization algorithms pro-
vide a remedy and enable robust optimization, even for noisy gradient estimates. We
focus on two schemes utilizing first-order gradients: (1) one of the earliest schemes
for stochastic optimization, the Robbins–Monro algorithm [410], and (2) the more
recent ADAM scheme [472].

Given θt, the general per iteration update rule for obtaining the parameters θt+1

when maximizing an objective is

θt+1 = θt + ηt

N

∑
i=1
Ĝ(θ). (2.101)

2.7.1 Robins–Monro stochastic optimization

The Robins–Monro algorithm is guaranteed to converge to the extremum under the
following conditions [412]:

∞

∑
t=1

ηt = +∞ and
∞

∑
t=1

η2
t < ∞. (2.102)

The step size of the gradient ascent step follows to

ηt =
α

(A + t)ρ
, (2.103)

where ρ ∈ (0.5, 1] and A and ρ are problem-dependent parameters.

9We consider here an objective based on a single datum that contributes as a summand to the overall
objective. This is specified in the corresponding chapters.
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2.7.2 ADAM stochastic optimization

ADAM is an adaptive optimization scheme that requires little user interaction in
handling a large amount of data and many parameters [472]. The procedure syn-
thesizes the advantages of two earlier developments, AdaGrad [473] and RMSProp
[474], which utilize step-size annealing. The procedure is summarized in Algo-
rithm 2, where � denotes the element-wise product of two vectors.

Algorithm 2: ADAM [472]. Standard settings for the free parameters are as
follows: α = 1× 10−3, β1 = 0.9, β2 = 0.999, and ε = 1× 10−8.

Input: Step size α, exponential decay rates β1, β2 ∈ [0, 1), stochastic gradient
Ĝ(θ), initial parameters θ0, ε.

Output: Optimized parameters θt.
1 Initialization:
2 m0 ← 0, v0 ← 0 (first- and second-moment vectors), t← 0 (step).
3 while θt not converged do
4 t← t + 1.
5 Compute the gradient: Ĝt(θt−1).

Update biased first- and second-moment estimates:
6 mt ← β1mt−1 + (1− β1)Ĝt.
7 vt ← β2vt−1 + (1− β2)Ĝt � Ĝt.

Estimate bias-corrected moment estimates:
8

m̂t ←
mt

(1− βt
1)

.

v̂t ←
vt

(1− βt
2)

.

Update parameters:

θt ← θt−1 + α
m̂t

(
√

v̂t) + ε
.

For a detailed overview of the development of stochastic optimization algorithms
with a focus on deep learning, we refer to Ref. [475].
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Chapter 3

Predictive coarse-graining

This chapter has been published in

M. Schöberl, N. Zabaras, P.-S. Koutsourelakis.
“Predictive coarse-graining”.
In: Elsevier Journal of Computational Physics 333 (2017), pp. 49-77.

The following provides a summary of the scientific achievements of the above work
and describes the individual contributions before closing this section.

3.1 Motivation and summary

The coarse-graining (CG) framework presented in the context of equilibrium statisti-
cal mechanics in [375] disrupts the perspective of existing CG approaches. Thus far,
CG approaches have built on a many-to-one, fine-to-coarse mapping, e.g., defined
by lumping multiple atoms into an effective interaction site or pseudo-molecule. In
such approaches, CG variables represent the center of mass of the pseudo-molecules,
and the fine-to-coarse mapping is fixed once it has been introduced. These ap-
proaches are discussed in more detail in Section 1.2.

The novelty of the data-driven predictive CG approach lies in the implicit defini-
tion of the CG variables by introducing a probabilistic and parametrizable coarse-to-
fine mapping that corresponds to a directed probabilistic graphical model [476]. In
this graphical model, the CG variables serve as latent generators that yield, through
the probabilistic coarse-to-fine mapping, the full atomistic fine-scale representations.
Here, we point out the novelties and advantages of the developed methodology
based on a related information theoretic CG approach [231]. Ref. [375] rigorously
builds on an information theoretic perspective and generalizes the objective towards
a versatile Bayesian framework. A consistent Bayesian approach enables the quan-
tification of epistemic uncertainties [477], which unavoidably occur in CG processes
[251, 478]. We derive an efficient approach for obtaining a posterior distribution
of the model parameters in the CG context. The posterior distribution expresses
the aforementioned uncertainties and facilitates truly predictive estimates of macro-
scopic observables. First, as we enable the reconstruction of a fully atomistic picture,
we can learn and predict fine-scale interdependencies and thus provide estimates

https://doi.org/10.1016/j.jcp.2016.10.073
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for macroscopic observables with dependence on the fine-scale coordinates. Sec-
ond, using the derived predictive posterior distribution, we demonstrate the com-
putation of credible intervals of macroscopic observables. These intervals reflect
the model’s predictive confidence based on limited data and the aforementioned
resolution-dependent uncertainties. The Bayesian framework developed here is seam-
lessly hierarchically extendable, supporting model complexity and model selection
tasks by functional priors; the latter promotes for the discovery of sparse solutions
to reveal prominent model features. Identification of features provides physical
insights that facilitate knowledge extraction given a limited amount of data. We
develop a computationally efficient and embarrassingly parallelizable Monte Carlo
expectation maximization scheme, addressing inference and learning of latent CG
variables and model parameters.

We comprehensively assess the proposed methodology with two relevant nu-
merical illustrations. As a demonstration of the algorithmic and conceptual enhance-
ments, we use the identification of CG models for a lattice spin system (Ising model
[479]) and an SPC/E water1 model [334]. We employ relatively simple coarse-to-
fine mappings p(x|z, θcf) and ensure the overall model flexibility of the predictive
distribution by an expressive CG description p(z; θc).

The CG Ising model encompasses a probabilistic mapping p(x|z, θcf) (Bernoulli
distribution), while the CG variables z interact via an expressive Boltzmann density
defined by a flexible CG interaction potential Uc(z; θc). The interaction potential
comprises a rich set of basis functions representing the order of considered inter-
actions and the considered CG interaction length. The CG water model involves a
coarse-to-fine mapping that describes the center of mass of the fine-grained atoms
probabilistically. A rich set of sine and cosine basis functions with different wave-
lengths compose the CG interaction potential of CG variables. The wave lengths
correspond to the volatility of the two-body CG interaction. Besides two-body in-
terations, we include a three-body term sought to capture the tetrahedral structure
of water molecules [481]. The observables represent structural properties, i.e., the
pairwise and angular distribution functions.

Both numerical examples provide insight into the influence of the available train-
ing data on the credibility of the model’s prediction compared to a fine-scale refer-
ence estimate. In the context of the CG Ising model, we further investigate the in-
fluence of the CG level on the model’s confidence. We show that, in both cases, the
use of functional priors (automatic relevance determination [421]) yields sparse and
physically interpretable solutions.

We reproduce the original publication with permission of ELSEVIER in Appen-
dix B.

1SPC/E water serves as the solvent in most biochemical molecular dynamic simulations, where
80% of the computational time is spent on simulating water [480].
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3.2 Declaration of the author’s individual contribution

Conceptual drafts and strategical developments of the proposed predictive CG me-
thodology, published in [375], were performed in collaboration with my supervisors,
N. Zabaras and P.-S. Koutsourelakis. Detailed model specifications, all implementa-
tions, numerical illustrations, and conclusions were produced individually. We list
detailed individual achievements below.

• Research on existing CG methods with critical review.

• Research on and detailed mathematical derivation of the suggested generative
probabilistic model.

• Research on inference schemes with the adoption of posterior approximation
methods and sampling approaches for the development of an expectation max-
imization mechanism.

• Research on and mathematical derivation of expressive distributions from an
exponential family based on the linear combination of basis functions.

• Suggestion of fine-scale reference systems with relevant observables to demon-
strate the methodological advantages.

• Implementation of a related information theoretic CG approach, the relative
entropy method [231], for comparison.

• Simulation of the reference Ising model with Monte Carlo approaches and its
implementation.

• Setting up an SPC/E water reference model and carrying out molecular dy-
namics simulations with LAMMPS including data preparation for model learn-
ing.

• Definition of model distributions for the Ising and SPC/E water model.

• Complete C++ implementation of the proposed CG approach and paralleliza-
tion with OpenMPI on an HPC cluster.

• Designing and performing numerical experiments with a focus on the influ-
ence of the amount of available training data, the level of CG, and sparseness.

• Preparation of the manuscript for submission with all necessary computation,
graphics, and visualizations.
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Chapter 4

Adaptive sequential model
refinement for Bayesian
coarse-graining

4.1 Introduction

We are interested in overcoming spatial and temporal limitations prevalent in brute-
force molecular dynamics (MD) simulations by using coarse-grained (CG) atomistic
systems. Scale limitations arise due to the unparalleled nature of scales of interest.
For example, protein-folding simulations can take milliseconds [48] and employ a
time step of femtoseconds for resolving bonded interactions [97]. CG methodologies
often rely on physical intuition and chemical expertise, which is not always available
for interesting complex atomistic systems [116].

Rather than assuming physical pre-knowledge, we aim to reveal physicochem-
ical insights by learning a CG model in which the lower-dimensional characteristic
CG variables serve as a generator and give rise to a fully atomistic representation.
Thus, by dimensionality reduction, parsimonious physically relevant features are
made accessible by inferring the latent CG variables from observed data. The gen-
eral framework for this probabilistic and predictive CG approach was introduced in
Chapter 3.

The following is a recap of Chapter 3 and Ref. [375]. In Ref. [375], we proposed a
predictive CG framework with two components:

(i) A generator for the latent CG variables z, q(z|θc), which involves parame-
ters θc.

(ii) A probabilistic coarse-to-fine mapping q(x|z, θcf), with the parameters θcf.

The CG variables are implicitly defined by q(x|z, θcf) and we train the model by
minimizing the KL divergence from the target Boltzmann density ptarget(x) to the
predictive density of the CG model, which we obtain by marginalizing z:

q(x|θ) =
∫

q(x|z, θcf)q(z|θc) dz. (4.1)
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The objective is then
min

θ
DKL

(
ptarget(x)‖q(x|θ)

)
, (4.2)

where θ = {θcf, θc}. As we elaborated in Chapter 3, minimizing Equation 4.2 can be
reformulated as maximizing the marginal likelihood or marginal log-likelihood:

log q(xDN |θ) =
N

∑
i=1

log q(x(i)|θ), (4.3)

which allows us to incorporate the CG approach into a Bayesian framework.
In Chapter 3, we utilized a simple density for modeling the coarse-to-fine map

q(x|z, θcf) (e.g., Bernoulli or Gaussian), compensated for by an expressive q(z|θc),
where

q(z|θc) ∝ e−βUc(z;θc). (4.4)

The potential Uc(z; θc), which expresses the interactions of CG variables z, is linear
with respect to θc:

Uc(z; θc) = θT
c φ(z),

and

θc =


θc

1
...

θc
L

 and φ(z) =


φ1(z; λ1)

...
φL(z; λL)

 .

Note that in Ref. [375], λl , the parameters of the basis, are assumed to be fixed.
Previous work follows the approach of using a rich set of basis functions φ(z)

(e.g., polynomials, sines, cosines, or kernels) and then, during the learning task,
identifying those that are relevant for explaining the atomistic reference data. For
this task, we employed a sparsity-favoring prior [420, 421], explicitly the ARD prior,
which pushes the parameters θk of unnecessary basis functions φk(z) to zero. The
ARD approach is dynamic in the sense that it can reactivate previously unnecessary
features φk(z), if they explain ptarget(x).

Model sparsity can be favored as explained above by searching for the most rel-
evant features φk(z) in a rich set of basis functions φ(z). A second way to obtain an
expressive but sparse description is the following. Start initially with only a limited
number of basis functions, which may have significant support in z, and iteratively
add new features as learning proceeds. Adding a feature results in a refined and
more expressive model for Uc(z; θ). However, it raises the following two questions:

(i) When, in terms of training iterations, is a good moment for refining Uc(z; θ)

by adding a new basis function?

(ii) Which basis function should be added?

We provide in this work a consistent information theoretic approach for answering
both questions simultaneously.
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A second novelty compared to previous work [375] is the way we express the
probabilistic coarse-to-fine mapping. The approach in this chapter circumvents the
need for physical understanding by introducing a Gaussian coarse-to-fine map
q(x|z, θcf), involving a linear model for expressing its mean value depending on
the latent CG variable [482–484]. We demonstrate the proposed methodology for
alanine dipeptide (ALA-2). Further, we investigate the influence of the amount of
training data on the probabilistic estimates of observables and provide credible in-
tervals that quantify the epistemic uncertainty induced due to the limited training
data.

The rest of this chapter is structured as follows. Section 4.2 elaborates on method-
ological advances, where we review the basic concepts of the predictive CG ap-
proach. We specify strategies for parametrizing the densities and discuss a varia-
tional Bayesian approach for obtaining posterior distributions on the parametriza-
tion of the coarse-to-fine map. Section 4.3 demonstrates the proposed adaptive Bay-
esian CG framework for the ALA-2 peptide. This chapter ends with a conclusion
and an outlook in Section 4.4.

4.2 Methodology

The general notation is the same as in Chapter 2. We are interested in identifying an
efficient and predictive CG model that seeks to approximate the target Boltzmann
distribution:

ptarget(x; β) =
1

Z(β)
e−βUf(x). (4.5)

We consider systems in equilibrium at constant temperatures T, and we omit the
temperature dependency of ptarget(x) in the following. The inverse temperature is
β = 1/kBT, where kB denotes the Boltzmann constant. The dimension of the atom-
istic reference is nf = dim(x). We seek dim(z)� dim(x).

4.2.1 Bayesian CG approach

We enhance the general predictive CG approach introduced earlier in Ref. [375] with:

q(x|θ) =
∫

q(x|z, θcf)q(z|θc) dz, (4.6)

in this chapter with regards to both components, the probabilistic coarse-to-fine
mapping q(x|z, θcf) and the description of the CG variables z, q(z|θc). We intro-
duce for the probabilistic mapping a Gaussian distribution whose mean µcf depends
linearly on z: µcf(z) = µ + Wz [483, 485]. Thus, we can write

q(x|z, θcf) = N (µ + Wz, Scf) , (4.7)

where Scf = diag
(
σ2

1 , . . . , σ2
nf

)
is a diagonal covariance matrix with nf = dim(x).

The parameters of the probabilistic mapping q(x|z, θcf) are summarized in θcf =
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{µ, σ2
1 , . . . , σ2

nf
}. We consider the matrix W as latent variables (like z) in the context

of variational Bayesian inference [357]. The prior distribution on W is a hierarchical
conjugate Gaussian-Gamma prior with the hyperparameters of the Gamma distribu-
tion set in accordance with the ARD values (a0 = b0 = 1× 10−5 [421]), as discussed
in Section 2.5.3. The prior on W, which spans the dimension nf × nc, factorizes row-
wise:

q(W) =
nf

∏
j=1

q(w(j)), (4.8)

where the parameters w(j) are associated with row j in W.
The distribution q(z|θc), specified in the following,

q(z|θc) ∝ e−βUc(z;θc)+Π[0,1]nc (z). (4.9)

generates the CG variables. Interactions between CG variables z are expressed with
the potential Uc(z; θc), which is linear concerning θc:

Uc(z; θc) = θT
c φ(z). (4.10)

The vectors θc and φ decompose to

θc =


θc

1
...

θc
L

 and φ(z; Λ) =


φ1(z; λ1)

...
φL(z; λL)

 . (4.11)

We employ in this work radial basis functions, explicitly Gaussian kernels:

φl(z; λl) = exp
(
−1

2
(z− µφl )

TS−1
φl
(z− µφl )

)
. (4.12)

This kernel is centered at µφl and has a diagonal covariance matrix
Sφl = diag(σ2

φl ,1
, . . . , σ2

φl ,nc
). Considering the aforementioned parametrization, a sin-

gle kernel φl(z; λl) is fully defined with the set of parameters λl = {µφl , Sφl}. We
summarize all parameters specifying the kernels in Λ = {λ1, . . . , λL}.

The auxiliary potential Π[0,1]nc (z) in Equation 4.9 is constant within [0, 1]nc and
has a quadratic slope beyond. This additive term in the potential naturally limits
the z domain, which is required since we use unnormalized kernels. The auxiliary
potential restricts neither the generality nor the model expressivity but rather en-
sures that the latent representation z(i) of its corresponding x(i) span the same areas
to allow comparability between different training runs. We employ the following
expression for that purpose:

Π[0,1]nc (z) =

1, if z ∈ [0, 1]nc

100 zTz, otherwise.
(4.13)
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4.2.2 Inference

In the following, we discuss the parameter-learning tasks of the generative model,
thus θcf and θc. The section mostly relies on components of variational inference that
were introduced and discussed in Sections 2.3, 2.4, and 2.5.2; thus, we only briefly
mention here the most relevant components in terms of the specific model setting
used in this chapter.

To obtain point estimates of the model parameters and for inferring the the la-
tent variables, we denote the marginal log-likelihood as log q(xDN |θ). We consider
atomistic data with xDN = {x(i)}N

i=1 and write for a single datum x(i):

L(i)(θ; x(i)) = log
∫

q(x|z, W, θcf)q(z|θc) dz q(W) dW

= log
∫

r(z|x)r(W)
q(x|z, W, θcf)q(z|θc)q(W)

r(z|x)r(W)
dz dW

≥
∫

r(z|x)r(W) log
q(x|z, W, θcf)q(z|θc)q(W)

r(z|x)r(W)
dz dW

= F (i)(r(W)r(z|x), θ; x(i)). (4.14)

The second line of Equation 4.14 implies that

r(z, W|x(i)) ≈ r(W)r(z|x(i)).

The lower bound on the log-likelihood composes the contributions per datum x(i):

F (r(W), r(z(1)|x(1)), . . . , r(z(N)|x(N)); xDN ) =
N

∑
i=1
F (i)(r(W)r(z|x), θ; x(i)). (4.15)

Refs. [357, 391, 405] propose a variational Bayesian expectation-maximization (VB-
EM) scheme and show that maximizing Equation 4.15 with respect to r(W) and
r(z(i)|x(i)) tightens the lower bound, which equals the marginal log-likelihood if

r(W)r(z|x) = q(x|z, W)q(z)q(W)

q(x)
. (4.16)

We employ a VB-EM scheme where the VBE step optimizes the lower bound,

F
(

r(W), r(z(1)|x(1)), . . . , r(z(N)|x(N)), θ; xDN
)

,

with respect to the auxiliary distributions r(·) and evaluates the expectations in
Equation 4.14. The maximization of F in terms of r(·) is reformulated as an opti-
mization with respect to the parametrization of r(z|x). φ summarizes parameters of
the latter r(z|x). The set of distributions approximating the posterior over the latent
variables are {r(z(i)|x(i), φ(i))}N

i=1, which we model as Gaussian densities with,

r(z(i)|x(i), φ(i)) = N
(

µ
(i)
φ , S(i)

φ

)
. (4.17)
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The vector φ(i) = (µ
(i)
φ , S(i)

φ ) summarizes the parameters where

S(i)
φ = diag(σ2

φ1 , . . . , σ2
φ1).

This chapter employs non-amortized inference, which implies the direct learn-
ing of µ

(i)
φ and S(i)

φ as parameters and not as parametrized functions that give rise to
µφ(x(i)) and Sφ(x(i)). The latter, amortized inference, provides a differentiable en-
coder mapping from any input atomistic configuration x and assigns a value to the
associated latent CG variable z. This is compelling in the context of collective vari-
able discovery and enhanced sampling methods due to the differentiability of z with
respect to x. The gradient can be used to guide the exploration of the configuration
space [486].1

The following addresses the computation of the approximate posterior r(W|xDN ),
which is modeled as

r(W|xDN ) =
K

∏
k=1
N
(

µ
(k)
W , SW

)
(4.18)

with

µ
(k)
W = S−1

cf

N

∑
i=1

〈
x(i)z(i)T

〉
r(z(i)|x(i))

SW (4.19)

SW =

(
diag〈τ〉+

N

∑
i=1

S−1
φ(i)

〈
z(i)z(i)T

〉
r(z(i)|x(i))

)−1

(4.20)

where

z(i)T = ΣzWTS−1
cf x(i) (4.21)

Σz =
(〈

WTS−1
cf W

〉
+ I
)−1

. (4.22)

The vector τ contains the precision entries of the Gaussian distribution involved in
the ARD prior based on Section 2.5.3 and the equations defining the approximate
posterior distributions mostly rely on Refs. [490–494].

The VBE step requires the computation of gradients:

∇φ(i)F (i)
(

r(W), r(z|x, φ(i)), θ; x(i)
)

.

Based on Equation 4.14, this involves, when regarding one datum x(i), the following
expression2:

∇φF
(

r(W), r(z|x, φ), θ; x(i)
)
=
∫

r(W) ∇φ

( ∫
r(z|x, φ)

(
log q(x|z, W, θcf)

+ log q(z|θc)− log r(z|x, φ)
)

dz
)

dW. (4.23)

1We consider an amortized inference approach [406, 407, 487–489] in Chapter 5.
2We omit here the superscript notation with (·)(i) for improving readability.
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The expectation under r(z|x, φ) in above equation is intractable and we utilize MC
approximations. However, the MC estimate of the gradient suffers from noise, as
discussed in Ref. [406]. A reparametrized version of Equation 4.23 provides remedy
and reduces the induced noise in the estimator [406].

For thus purpose, we introduce an auxiliary random variable ε ∼ N (0, I), which
gives rise to [408],

z(ε; φ) = µφ + σφ � ε. (4.24)

By using the change of variables in Equation 4.24, the inner integral of Equation 4.23
becomes,

∇φ 〈log q(x, z|W, θ)− log r(z|x, φ)〉r(z|x,φ)

= ∇φ 〈log q(x, z|W, θ)− log r(z|x, φ)〉p(ε)

=

〈
∂ log q(x, z(ε; φ)|W, θ)

∂z
∂z(ε; φ)

φ

〉
p(ε)

−
〈

log r(z(ε; φ)|x, φ)

∂z
∂z(ε; φ)

φ

〉
p(ε)

.

(4.25)

Note that the above expression still needs to be assessed as an expectation under
r(W).

The VBM step, as discussed in more detail in Section 2.5.2, optimizes the lower
bound F with respect to parameters θ. These include θcf, the mean and covariance
of q(x|z, θcf), and θc associated with the interaction potential of the CG variables z,
Uc(z; θc).

4.2.3 Exponential family densities: Uniqueness of solution

Our previous work on predictive CG (Appendix B or Section 2.4 in [375]) demon-
strates the uniqueness of the solution when employing throughout densities belong-
ing to the exponential family, as in Equation 4.26. A similar discussion is valid for
this chapter, which we show below in an modified version of the original discussion
in Ref. [375].

The distributions for q(z|θc) and q(x|z, θcf) can be expressed in form the expo-
nential family:

q(z|θc) = exp{θT
c φ(z)− A(θc)}, (4.26)

q(x|z, θcf) = exp{θT
cfψ(x, z)− B(z, θcf)}. (4.27)
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In the above equations, A(θc) and B(z, θcf) are normalization constants or partition
functions, which are defined as

A(θc) = log
∫

eθT
c φ(z)dz, (4.28)

B(z, θcf) = log
∫

eθT
cfψ(x,z)dx. (4.29)

The derivatives of the partition function with respect to the associated parametriza-
tion are

∂A(θc)

∂θc,k
= 〈φk(z)〉q(z|θc)

,

∂2A(θc)

∂θc,k∂θc,l
= Covq(z|θc)[φk(z), φl(z)],

(4.30)

and
∂B(z, θcf)

∂θcf,k
= 〈ψk(x, z)〉q(x|z,θcf)

,

∂2B(z, θcf)

∂θcf,k∂θcf,l
= Covq(x|z,θcf) [ψk(x, z), ψl(x, z)] .

(4.31)

We denote with 〈·〉p in the above expressions the expectation under the density p
and Covp [·, ·] is the covariance of the arguments with respect to p.

Thus, we can write for the gradients of the objective F :

∂F
∂θc,k

=
N

∑
i=1

(〈
φk(z(i))

〉
r(z(i)|x(i),φ(i))

− 〈φk(z)〉q(z|θc)

)
,

∂F
∂θcf,k

=
N

∑
i=1

(〈
ψk(x(i), z(i))

〉
r(z(i)|x(i),φ(i))

−
〈

ψk(x, z(i))
〉

q(x|z(i),θcf)r(z(i)|x(i),φ(i))

)
.

(4.32)

Fundamental to the proposed adaptive model refinement approach are gradients
∇θcF , which we specify at this point based on the employed model parametrization
for Uc(x; θc):

∇θcF = β 〈φ(z)〉q(z|θ) − β 〈φ(z)〉r(z|x(i),θcf)
. (4.33)

Given the gradient, we can obtain the Hessian with the general form for exponential
family distributions:

∂2F
∂θc,kθc,l

= −N Covq(z|θc) [φk(z), φl(z)] ,

∂2F
∂θc,kθcf,l

= 0,

∂2F
∂θcf,kθcf,l

= −
N

∑
i=1

Covq(x|z(i),θcf)r(z|x(i),φ(i)) [ψk(x, z), ψl(x, z)] .

(4.34)

Composing the above second derivatives into a Hessian matrix yields a block-diag-
onal structure with a linear combination of parameters (θc, θcf) and features (φ(z),
ψ(x)). Since a block-diagonal Hessian is always negative definite, we conclude that
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the objective F is concave and thus, has a unique maximum.
Note that the approximation of the Hessian in Equation 4.34 by MC estimators

implies a noisy estimate. In addition to the Hessian, all gradient computations rely
on MC estimators, which are likewise afflicted by noise. Developments in optimiza-
tion schemes [495–499], with focus on CG approaches [194], lead, nevertheless, to
convergent optimization procedures. This work relies on ADAM stochastic opti-
mization with parameters as presented in Section 2.7 and originally in Ref. [472].

4.2.4 Adaptive sequential model refinement

In Section 4.2.2, we introduced a VB-EM algorithm that alternates between an E step
and an M step in inferring hidden variables and optimizing the model parameters
θ with the overall goal of maximizing the objective F . Convergence in maximizing
the parameters is reached when F provides a plateau and does not improve further.
Corresponding to the latter case, the gradients stochastically fluctuate around zero.
This means that a sufficiently flexible model can be improved only: (1) by using new
insights, (2) by employing better approximations in the inference, or (3) by reducing
noise in the gradient estimators. However, if the model is too restrictive compared
to the data that it is supposed to explain, it can converge at higher levels F by en-
hancing the flexibility of the model. In the proposed CG framework, we pursue this
strategy by sequentially adding expressivity into Uc(x). Upon convergence of the
objective F given the current model, we add a new feature that enhances the flex-
ibility. Thereafter, learning the augmented model parameters continues, including
that associated with the added feature.

The alternating process between adding features and optimizing the new model
continues as long as enriching the model leads to convergence at higher levels of the
objective F . We operate on the refinement of Uc(x; θc). However, this does not limit
the applicability of the process for other model components, such as q(x|z; θcf). The
most crucial question in the context of model refinement is how to identify features
that maximize the anticipated added value of the model.

Recall that we express the CG potential Uc(z; θc) by a linear combination of basis
functions, which we often refer to as features, and the associated parameters θc, as
originally given by Equation 4.10, as

Uc(z; θc) = θT
c φ(z),

where, as introduced in Equation 4.10,

θc =


θc

1
...

θc
L

 and φ(z; Λ) =


φ1(z; λ1)

...
φL(z; λL)

 .
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The family of feature functions in this work, i.e., the radial basis functions, and more
explicitly Gaussian kernels, does not limit the generality of the proposed approach
for other basis functions. The Gaussian kernels (Equation 4.12) are

φl(z; λl) = exp
(
−1

2
(z− µφl )

TS−1
φl
(z− µφl )

)
,

where Sφl = diag(σ2
φl ,1

, . . . , σ2
φl ,nc

) is the covariance matrix, which has a diagonal
structure, and µφl defines the center of the kernels. For this parametrization, a single
feature φl(z; λl) is then fully defined by the set of parameters λl = {µφl , Sφl}. We
summarize all the parameters specifying kernels as Λ = {λ1, . . . , λL}.

We denote the current set of converged parameters with θconv
c and the associated

CG potential as Uconv
c (z; θconv

c ) based on the set of features φ(z; Λ). The current
model encompasses L features. Thus, dim(θconv

c ) = L and likewise dim(φ) = L. We
seek to refine Uconv

c (z) by adding a new feature φL+1(z; λL+1) and write

Uc(z, θconv
c , θL+1) = Uconv

c (z; θconv
c ) + θL+1 φL+1(z; λL+1) , (4.35)

with the initial value for θL+1 = 0, which implies that the potential before adding the
new feature equals the potential after adding a new basis function, Uc(z, θconv

c , θL+1) =

Uc(z, θconv
c ). The overall optimization is driven by minimizing the KL divergence,

which can be optimized by maximizing the lower bound on the marginal log-li-
kelihood:

DKL
(

ptarget(x)‖q(x|θ)
)
=− 〈log q(x|θ)〉ptarget(x) +

〈
log ptarget(x)

〉
ptarget(x)

≈− 1
N

N

∑
i=1

log q(x|θ) +
〈
log ptarget(x)

〉
ptarget(x)

≤− 1
N

N

∑
i=1

(〈
log q(x(i)|z, θcf)

〉
r(z|x(i))

+ 〈log q(z|θc)〉r(z|x(i))
)

+
〈
log ptarget(x)

〉
ptarget(x)

=− 1
N

N

∑
i=1
F (r(z(i)|x(i)), θ; x(i)) +

〈
log ptarget(x)

〉
ptarget(x)

,

(4.36)
where the lower bound on the log-likelihood or upper bound on the KL diver-
gence F (r(z(i)|x(i)), θ; x(i)) in Equation 4.36 depends on the (approximate) posterior
r(z(i)|x(i)). The latter does not have an explicit dependence on Uc(z; θc). However,
changing Uc(z; θc) implies different optima for r(z(i)|x(i)).

We propose to add the feature φL+1(z; λL+1) defined by λL+1, which maximizes
the absolute value of the derivative of F with respect to the new parameter θL+1 at
θL+1 = 0. The new feature is then supposed to maximize the anticipated gain when
augmenting the potential Uc(z, θconv

c ) by the feature φL+1(z; λ
opt
L+1).
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This involves the derivative of F with respect to θL+1:

dF
dθL+1

=
N

∑
i=1

〈
d log q(z|θc, θL+1)

dθL+1

〉
r(z(i)|x(i),φ)

, (4.37)

and the expression log q(z|θconv
c , θL+1) in terms of the old features and the feature to

be added φL+1(z; λ
opt
L+1):

log q(z|θconv
c ) = −βUc(z; θconv

c )− βθL+1φL+1(z; λ
opt
L+1)− Z(θconv

c , θL+1), (4.38)

where we consider θconv
c as fixed while identifying the optimal feature φL+1(z; λ

opt
L+1).

We obtain the relevant argument of the expectation in Equation 4.37 with,

d log q(x|θconv
c )

dθL+1

∣∣∣∣
θL+1=0

= −βφL+1(z; λL+1)−
d log Z(θL+1)

dθL+1

∣∣∣∣
θL+1=0

= −βφL+1(z; λL+1) + β 〈φL+1(z; λL+1)〉q(z|θcomv
c ) .

(4.39)

Substituting Equation 4.39 into Equation 4.37 finally leads to

dF
dθL+1

= β
N

∑
i=1

(
〈φL+1(z; λL+1)〉r(z|x(i),φ) − 〈φL+1(z; λL+1)〉q(z|θconv

c )

)
. (4.40)

As mentioned earlier, the absolute value or squared value of the gradient of F with
respect to θL+1 at θL+1 = 0 is objective to maximization with respect to the parame-
ters λL+1 of the new feature φL+1(z; λL+1). We employ the squared value of Equation
4.40 which is proportional to:

H(λL+1) =

(
N

∑
i=1

(
〈φL+1(z; λL+1)〉r(z|x(i),φ) − 〈φL+1(z; λL+1)〉q(z|θconv

c )

))2

. (4.41)

Maximizing H(λL+1) in Equation 4.41 with respect to λL+1 implies searching for
the basis φL+1 that yields the largest discrepancy between its aggregated expecta-
tion under r(z(i)|x(i), φ) and q(z|θconv

c ). By adding the new feature φL+1, the new
latent generator q(z|θconv

c , θL+1) should be enriched such that it provides a new den-
sity q(z|θconv

c , θL+1), which is more promising for capturing the aggregated pos-
terior r(z(i)|x(i), φ) over the latent CG variables. If the aggregated approximate
posterior and the generative distribution over the latent variables z match exactly,
then H(λL+1) = 0. Thus, maximizing H(λL+1) gives rise to the basis that is most
poorly represented in q(z|θconv

c ) compared to the aggregated posterior distributions
r(z(i)|x(i), φ) for all x(i) ∈ xDN .

After having obtained the optimal λL+1, there are two potential avenues for op-
timizing θc:

(i) Fix all θc and continue optimizing only the one parameter associated with the
new feature φL+1, θL+1.
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(ii) Optimize the whole set θc, including previous parameters and the new θL+1

associated with the added feature.

Either way, once we added a new feature, specified by the optimal parameter λL+1,
it remains fixed in the continuing learning process.

Before ending this section, we note some potential pitfalls of the proposed se-
quential adaptive refinement scheme that require some consideration. The objective
H(λL+1) can be maximized by adjusting a multiplicative constant in φL+1, which is
misleading. Therefore, we suggest employing only features φ that are insensitive to
scalar multiplication, for example, by employing normalized kernels. Alternatively,
and this is the approach we follow, restrict the overall domain of possible z values.
We implement this by naturally limiting the domain to z ∈ [0, 1]nc . The latter neither
restricts the expressivity of the obtained CG model nor limits the proposed method.

Moreover, the proposed approach for sequentially adding features φ by maxi-
mizing the anticipated benefit expressed in H does not guarantee that the KL-diver-
gence in Equation 4.36 will decay. This may have several reasons. First, we rely on
suboptimal posterior distributions over the latent variables, r(z|x), which could dif-
fer from the exact q(z|x). Second, the optimization of H in Equation 4.41 is based on
θL+1 = 0, which means that the KL divergence can become smaller, remain constant,
or increase if θL+1 6= 0.
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Refer to Algorithm 3 for a summary of the proposed adaptive model refinement
procedure.

Algorithm 3: Adaptive sequential model refinement
Input: Initial Uc(x; θ) = θ1φ1(z; λ1), with φ1(z; λ1) having large support in

the z domain.a Provide a family of features φ(z; λ) parametrized by
λ.

Output: Refined CG potential Uc(x; θ).
1 L← 1
2 while DKL

(
ptarget(x)‖q(x|θ)

)
continues decaying by adding new features

φL+1(z; λL+1) do
Model training:
Optimize the current model, as discussed in Section 4.2.2. Upon
convergence of F , obtain:

3 θconv
c (dim(θ) = L).

Add a new feature by maximizing H(λ), the (anticipated) benefit:
4 λL+1 = arg max

λ

H(λ) (Equation 4.41).b

Augment the parameter vector:
5 θc ← (θconv

c , θL+1), where θL+1 = 0.
Augment the parameter vector of the features:

6 Λ← (Λ1:L, λL+1).
Note that after obtaining λL+1, the parameters corresponding to the
feature remain fixed. Only the corresponding parameter vector θc is
optimized thereafter.c

Augment the feature vector:
7 φ(z; Λ)← (φ1:L, φL+1(z; λL+1)).

Update the current step:
8 L← L + 1.

aWe initialize the mean of the added Gaussian kernels, µ
φ
L, based on sampling from a uniform

distribution in [0, 1]nc and use σ2
φ,1 = 4 · 1, where 1 denotes a vector with all entries being one.

bWe employ a Broyden–Fletcher–Goldfarb–Shanno optimization approach for maximizing H(λ).
cThere are different possibilities for optimizing θc, e.g., consider only the new θL+1 in the optimizer

or the whole θc.

4.3 Numerical illustration: ALA-2

This section assesses the performance of the proposed data-driven CG method for
alanine dipeptide (ALA-2). We investigate, next to the adaptive model refinement,
aspects of the influence of the amount of available training data N on predictive
capabilities.

The ALA-2 peptide exhibits three distinct conformational modes3, which are
characterized by their corresponding dihedral angles (φ, ψ) (defined in Figure 4.1(a)).

3We observe three distinct modes but there are definitely more intermediate conformations [500].
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φ ψ

(a) Dihedral angels for ALA-2.

β-1 β-2

α

β-2β-1

(b) Characteristic conformations accord-
ing [500].

FIGURE 4.1: Dihedral angles (left) and (φ, ψ) statistics of a reference
simulation with characteristic modes (right).

The characteristic conformations are α, β-1, and β-2 depicted in the Ramachandran
plot [501] in Figure 4.1(b). The considered ALA-2 peptide is a system with 22 atoms
of the elements hydrogen, oxygen, nitrogen, and carbon. By ignoring rigid-body
motions, one can fully describe the system with 60 degrees of freedom. We employ
a Cartesian coordinate representation in x and we include the whole set of atomistic
coordinates, thus dim(x) = 66. The coordinate ordering and the associated meaning
as used in the vector x are explained in Appendix E.3.

The initial values for the mean of the basis functions, µφl , are drawn from a uni-
form distribution in [0, 1]nc and we set the covariance matrix to Sφl = 4 · I. The
latter resembles, given the domain z ∈ [0, 1]nc , a kernel that provides through q(x|θ)
a relatively wide support. We employ in the following experiments the model set-
ting introduced in Section 4.2.1 and search sequentially for the optimal feature to be
added based on Gaussian kernels.

We consecutively define all necessary numerical details for obtaining the pre-
sented results. The expressions in Section 4.2 involve expectations with respect to
r(z|x), r(W), and q(z|θ). We approximate these with the MC methods [306, 502] that
were introduced in Section 2.6.2. In contrast, the distributions r(z|x) and r(W) are
simple and have a tractable cumulative distribution function. The generator of CG
variables, the distribution q(z|θc), is initially simple while we seek to incorporate
complexity by refining Uc(z). A refined Uc(z) potentially leads to distinct modes
so that employing random walk MCMC methods could hamper the sufficient ex-
ploration of q(z|θc) given a limited number of samples J. The whole procedure
crucially depends upon having unbiased samples of q(z|θc). Adaptive sequential
Monte Carlo [205] (SMC) leverages in this work the efficient exploration of multi-
modal potential energy surfaces evoked by adaptive model refinement. Adaptive
SMC was introduced in Section 2.6.5 and summarized in Algorithm 1. We employ
this parallelizable particle-based approach for obtaining J = 4000 samples from
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q(z|θc) for estimating expectations 〈·〉q(z|θc)
. Given a datum x(i), we approximate

the expectations under r(z|x(i)) with M = 20 samples. This is a relatively low num-
ber compared to J. However, note that convergence is also guaranteed even if we
would employ only M = 1 and that we need draw M samples from the N poste-
rior distributions r(z(i)|x(i)). M = 20, as used in the experiments, is a compromise
between accuracy and efficiency. Further, as we see later, the variances in the VBE
step for the approximate posterior distributions r(z(i)|x(i)) are small compared to the
domain of z. Thus small M suffices.

The approximate posterior r(z(i)|x(i), φ(i)) is obtained by optimizing its param-
eters φ(i) during the VBE step (Section 4.2.2) by employing black box variational
inference [406], as discussed in the methodology section. We optimize the mean
and diagonal entries of the covariance matrix associated with r(z|x(i), φ(i)) by em-
ploying the Robins–Monro method [410] with the parameter setting given in Section
2.7.1. We maximally perform 100 iterations per E step in the optimization of φ(i)

and employ as initial values the converged φ(i) from the previous E step. Usually,
convergence is reached after less than 15 Robins–Monro updates. Since we use non-
amortized inference, the posterior distributions are independent given the datum
x(i). We make use of this independence by embarrassingly parallelizing the E step.
The M step, which optimizes F with respect to θ, employs ADAM [472] as a sto-
chastic optimization algorithm with the published standard parameter settings.

4.3.1 Adaptive feature learning

In the first part of the numerical illustration, we demonstrate the adaptive refine-
ment procedure, as summarized in Algorithm 3. We emphasize that the results
presented were obtained by optimizing the whole set of parameters in θc. Strate-
gies where one optimizes only the θL+1 associated with the new feature φ(z; λL+1)

while keeping all others fixed upon convergence in earlier stages are feasible. How-
ever, continuing with the complete θc and thus, also those parameters associated
with features added from earlier stages leads to superior overall performance. Note
that, once the anticipated optimal feature is found by identifying λL+1, the corre-
sponding λ parameters remain fixed. For visual representability, we set dim(z) = 2.
We employ for training a data set xDN with N = 526 reference atomistic snapshots.
The initial Uc(z), including one basis function and associated θ1 = 0, is a uniform
distribution on the domain of z. We depict the initial Uc(z) in Figure 4.2. Once θ1

converged, we begin the adaptive refinement of Uc(z) and alternate between opti-
mizing θ and refining Uc(x) by adding new features by identifying λ of φ(z; λ) maxi-
mizing the anticipated benefit, as discussed in Section 4.2.4. Figure 4.3 demonstrates
the process of adding new features and the corresponding CG potential energy sur-
face Uc(x) (left column) at early training stages, i.e., after four features have been
added. The right column in Figure 4.3 depicts the negative aggregate and average
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FIGURE 4.2: Initial potential Uc(z; θ) assessed on the relevant z do-
main, where θ1 = 0, implying a uniform qc(z|θc). The color bar be-
low the figure indicates the values of Uc(z; θ). Note that we set the
minimum of Uc(z; θ) for comparability with other steps in the adap-

tive refinement to one.

log-posterior, which we estimate as

− 1
N

N

∑
i=1

log r(z|x(i)). (4.42)

The latter expression is evaluated on a grid over the domain z ∈ [0, 1]nc . The re-
finement of Uc(x) initially lags behind the already very characteristic posterior land-
scape visualized by Equation 4.42. Note that we wish to have the CG potential Uc(z)
close to the average log-posterior introduced in Equation 4.42. Adding features is
continued in Figure 4.4. The anticipated benefit, expressed by H(λL+1), of adding
new features φ(z; λL+1) clearly drops with an increasing number of features, as de-
picted in Figure 4.5. This behavior makes sense and as we discussed earlier, one can
employ H(λL+1) as the stopping criterion for model refinement. With comparably
low values of H(λL+1), adding further features does not improve the model in terms
of explaining the available data better. In this case, we could endeavor reducing
noise in the gradient estimators by increasing the number of samples. Another av-
enue would involve improving the posterior inference, for example, by considering
a Gaussian with full rank covariance or a flexible extension provided by amortized
inference [407, 489].

In case of convergence of all model parameters and when the expected benefit of
adding new features is fluctuating with low values compared to H at earlier stages,
we are interested to see if any structure has been revealed in the latent space. The
mean values of the approximate posterior distributions r(z(i)|x(i), φ(i)) form clusters
in the latent space according to the originating conformation (α, β-1, or β-2) of the
atomistic coordinates x(i). This reflects that the latent encoding is associated with
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(a) Uc(z; θ) with dim(θc) = 1.

(c) Uc(z; θ) with dim(θc) = 2. (d) − 1
N ∑N

i=1 log r(z|x(i))

(e) Uc(z; θ) with dim(θc) = 5. (f) − 1
N ∑N

i=1 log r(z|x(i))

(g) Uc(z; θ) with dim(θc) = 10. (h) − 1
N ∑N

i=1 log r(z|x(i))

FIGURE 4.3: Sequential adaptive refinement of Uc(z; θ). The left col-
umn depicts the potential energy Uc(z; θ) assessed in z ∈ [0, 1]nc . The
potential Uc(z; θ) is composed of the indicated number of features.
The right column represents the averaged aggregated log-posterior
r(z(i)|x(i), φ(i)) assessed in z ∈ [0, 1]nc . The potential Uc(z; θ) should
approach the averaged aggregated log-posterior r(z(i)|x(i), φ(i)). The
first few alternating steps indicate that the posterior converges faster

compared to how fast the model refines.
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(a) Uc(z; θ) with dim(θc) = 25.

(c) Uc(z; θ) with dim(θc) = 50. (d) − 1
N ∑N

i=1 log r(z|x(i))

(e) Uc(z; θ) with dim(θc) = 75. (f) − 1
N ∑N

i=1 log r(z|x(i))

(g) Uc(z; θ) with dim(θc) = 122. (h) − 1
N ∑N

i=1 log r(z|x(i))

FIGURE 4.4: Sequential adaptive refinement of Uc(z; θ). The left col-
umn depicts the potential energy Uc(z; θ) assessed in z ∈ [0, 1]nc . The
potential Uc(z; θ) is composed of the indicated number of features.
The right column represents the averaged aggregated log-posterior
r(z(i)|x(i), φ(i)) assessed in z ∈ [0, 1]nc . The potential Uc(z; θ) should
approach the averaged aggregated log-posterior r(z(i)|x(i), φ(i)). The
potential Uc(z) is further refined and resembles more and more the

averaged aggregated log-posterior.
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FIGURE 4.5: H(λL+1) of Equation 4.41 for subsequently added fea-
tures (horizontal axis) upon convergence of λ, thus the maximum of

H in terms of λ.

the dihedrals (φ, ψ), since the latter distinguish the different conformations (Figure
4.6).

4.3.2 Predictive observable estimation

The overall goal of the proposed adaptive CG approach is to obtain a predictive
model that is an efficient estimator of observables and to quantify epistemic uncer-
tainties due to the limited amount of training data. Relevant observables for the
ALA-2 peptide are statistics on the radius of gyration and the root-mean-square de-
viation from a reference α-helix configuration. Expressions for these observables are
given in Appendix C.1.

We compare the maximum a posteriori (MAP) estimates with reference estimates
based on 10 000 samples of a reference trajectory in Figs. 4.7 and 4.8. In addition to
the depicted MAP prediction in these figures, we provide the 1–99% credible interval
reflecting the epistemic uncertainty induced by relying on a limited amount of train-
ing data. By employing more evidence, expressed by larger data sets, the predictive
model gains confidence and so the credible intervals shrink. The credible intervals
are obtained as introduced in Equation 2.42 and Appendix A.1. In the present case,
we propagate uncertainties expressed in the posterior of W based on variational
Bayesian inference (Section 2.5.2) and the Laplace approximation (Section 2.5.4) to
obtain an approximate posterior distribution on θc. All credible intervals shown are
based on 4000 samples drawn from the joint approximate posterior q(W, θc|xDN ).
For each sample (W(i), θ

(i)
c ), we use J samples from q(x|W(i), θ

(i)
c , θMAP

cf ) to estimate
the observables associated with (W(i), θ

(i)
c ).

Predictions of the statistics as a function of the characteristic dihedral angles
(φ, ψ) are shown in comparison to a reference estimate in Figure 4.9.
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z1

z 0

FIGURE 4.6: Mean values of the approximate posterior distributions
r(z(i)|x(i), φ(i)) given reference data x(i). The latent representation of
x(i) employs markers according to their reference conformation, i.e.,
α, β-1, or β-2. Similar x(i), in terms of being from the same conforma-

tional mode, map to a similar latent embedding and form clusters.
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FIGURE 4.7: Predictive estimates of the radius of gyration for
dim(z) = 2 for different sizes of data set N. The observable is de-
fined in Appendix C.1. The MAP estimates (red lines) are compared
to the reference estimates (black lines), which are based on a reference
atomistic simulation with 10 000 samples. The shaded region around
a MAP estimate depicts the 1–99% credible interval, which indicates
the epistemic uncertainty due to the limited amount of training data.
The credible intervals depicted were estimated using 4000 posterior

samples of q(W, θc|xDN ) based on Appendix A.1.
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FIGURE 4.8: Predictive estimates of the root-mean-square deviation
for dim(z) = 2 for different size of data set N. The observable is de-
fined in Appendix C.1. The MAP estimates (red lines) are compared
to the reference estimates (black lines), which are based on a reference
atomistic simulation with 10 000 samples. The shaded region around
a MAP estimate depicts the 1–99% credible interval, which indicates
the epistemic uncertainty due to the limited amount of training data.
The credible intervals depicted were estimated using 4000 posterior

samples of q(W, θc|xDN ) based on Appendix A.1.
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(a) MAP prediction based on N = 526 and
dim(z) = 2.
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(b) Reference estimate based on 10 000 samples.

FIGURE 4.9: Predicted Ramachandran plot (left) compared to the ref-
erence estimate (right).
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4.4 Summary and outlook

We have presented a Bayesian CG approach that both handles model selection tasks
and provides a predictive CG framework.

In previous work, presented in Chapter 3, we identified the most relevant fea-
tures in a rich set of basis functions. For applications differing from CG, in which we
seek to obtain a lower-dimensional description, finding a rich set of basis functions
for high-dimensional settings, e.g., dim(z) = 100, can be prohibitive [503]. There-
fore, the proposed avenue is also beneficial in such settings since we initially learn a
simple model. We drive the parameters to convergence and then add a wisely iden-
tified basis function that adds flexibility and improves the model’s predictive capa-
bilities. However, importantly, how do we know which new basis function to add?
We develop an automated approach that searches among features φ(z; λ), parame-
trized by λ, to add the one feature that provides the most considerable anticipated
benefit. We developed an objective that reformulates the search among φ(z; λ) as
an optimization problem concerning λ. As an objective, we employ the gradient
of the lower bound with respect to θ, associated with the feature to be added at
θ = 0. This gradient provides a metric for expressing the deviation between q(z)
and the aggregated and averaged posterior r(z|x). Maximizing the absolute value
or squared value of this gradient pushes the new basis to regions where the discrep-
ancy between q(z) and the aggregated posterior r(z|x) is the largest. Thus we add
the feature associated with the largest anticipated benefit.

In addition to this component, we proposed a Bayesian CG framework, and we
developed a flexible coarse-to-fine mapping by employing a Gaussian encompass-
ing a mean obtained by evaluating a linear model. The latter facilitates learning a
coarse-to-fine mapping in the absence of any prior physical insight, which may not
be available. We propose treating the matrix W by transforming z to x as a latent vari-
able, and we make use of variational Bayesian inference to obtain the corresponding
posterior distribution. Predictive observable estimates were augmented by credible
intervals that reflect the uncertainty due to the limited amount of training data.

Next, our strategy is to extend the model hierarchically using a mixture of CG
generators:

q(z) =
I

∏
i=1

(q(x|zi)qi(zi|γ)) q(γ) dz dγ. (4.43)

The proposed approach may enable local CG models in the context of each confor-
mation. This formulation yield a posterior over γ, q(γ|x(i)), which is the responsi-
bility for the corresponding mode for a given datum x(i) and thus, gain additional
physical insight.

Further, we are interested in amortized inference schemes, which provide an ef-
ficient probabilistic mapping from any x directly to z. The flexible probabilistic map-
ping could support the discovery of latent collective variables (CVs), which can be
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employed to drive the exploration of the configurational space. We suggest assum-
ing a simple distribution of the latent variables accompanied by a complex prob-
abilistic mapping. The latter enables the learning of complex transformations and
thus, compress all relevant physics into an elementary distribution over the latent
variable z. The latter strategy has similarities with an Auto-Encoding Variational
Bayes [407], which we explore in Chapter 5.
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Chapter 5

Predictive collective variable
discovery with deep Bayesian
models

This chapter has been published in

M. Schöberl, N. Zabaras, P.-S. Koutsourelakis.
“Predictive collective variable discovery with deep Bayesian models”.
In: AIP The Journal of Chemical Physics 150 (2019), 024109.

The following provides a summary of the scientific achievements of the above work
and describes the individual contributions before closing this section.

5.1 Motivation and summary

The simulation of atomistic systems containing M = 1× 105 atoms for a time hori-
zon of only 1× 10−4 s, resolved by time steps of ∆t = 1× 10−15 s, requires a wall
clock time of 1 year [504, 505]. An additional obstacle in atomistic systems results
from the free-energy barriers between favorable atomistic configurations, which tre-
mendously hamper the exploration of the full configurational space [506]. Acceler-
ated exploration can be achieved by emplying enhanced sampling methods [507–
514]. These rely on a lower-dimensional representation of the fully resolved atom-
istic description, which encodes system characteristics and changes in atomistic con-
formations (i.e., moving from one free-energy basin to another) [515]. Collective
variables (CVs) depict such quantitative and lower-dimensional representations of
relevant atomistic processes [507] and can be employed for guiding enhanced sam-
pling methods [516]. However, the expected acceleration of enhanced sampling cru-
cially depends on the quality of the obtained CVs. Inappropriate CVs result in en-
hanced sampling having even lower efficiency than brute force MD [517].

In [415], we developed a data-driven Bayesian framework leveraging the iden-
tification of CVs, providing physical insights without assuming any prerequisite

https://doi.org/10.1063/1.5058063
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knowledge of the reference system. This methodology is suitable for use with lim-
ited atomistic reference data and thus copes well with noisy gradients. We employ
N = 501 reference samples, whereas existing dimensionality reduction methods in
the context of CV discovery are based on determining eigenvectors of transition ma-
trices [508, 518–528], requiring densely sampled reference trajectories and compre-
hensive datasets encompassing more than 10 000 samples [529–531]. The developed
methodology yields CVs that are differentiable with respect to fine-scale atomistic
coordinates. Differentiability is important for seamlessly incorporating CVs into en-
hanced sampling schemes, e.g., for biasing the fine-scale potential Uf(x) and com-
puting corresponding biasing forces. This work builds on findings of the publication
summarized in Section 3.1 and considers CVs as latent generators yielding, through
a probabilistic coarse-to-fine mapping, the full atomistic trajectory. This coarse-to-
fine mapping can be interpreted as a decoder decrypting the latent CV to give the
corresponding observed atomistic configurations. By training the generative model
based on limited data, we seek to approximate the underlying complex reference
density ptarget(x). The complement to the generative decoder is the posterior distri-
bution over the latent variables, given the observations. We call this the component
encoder, as it translates atomistic observations to a parsimonious CV representation.
This encoder is of paramount importance to revealing latent CVs with physical no-
tion.

Beyond providing physical insights by identifying CVs, the framework enables
the computation of probabilistic estimates of observables augmented by credible in-
tervals. This is achieved though the predictive distribution. Credible intervals, as
first introduced in the context of coarse-graining in Section 3.1, express the model’s
predictive confidence based on limited data. Identifying CVs and providing a pre-
dictive distribution are seamlessly addressed by deep Bayesian models. We utilize
recent findings in deep learning research with an Auto-Encoding Variational Bayes
modification [235, 407, 408] favoring sparse solutions.

We employ expressive deep neural networks for approximating the posterior
distribution over latent variables (q(z|x)) and likewise for the probabilistic mapping
(p(x|z)), while p(z) remains simple, implying a simple representation of CVs. Ex-
pressivity and complexity are pushed to the probabilistic mappings2 in combination
with amortized inference [487, 488, 532]. Amortized inference enables drawing con-
clusions about latent CVs given any atomistic configuration input and thus facili-
tates the learning of a general encoder. An overview of the encoder and decoder is
given in Figure 5.1.

We demonstrate the functionality of the proposed Bayesian CV discovery with
deep learning by producing a parsimonious representation of alanine-dipeptide

1N = 50 is comparably low with respect to the effective dimensionality of the reference fine-scale
system with dim(x) = 60.

2This is in contrast to the approach described in Chapter 3, where we explore an expressive distri-
bution of latent variables p(z) and a simple mapping p(x|z). The different parametrization strategies
are emphasized in more detail in the closing discussion in Chapter 7
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z(i) ∼ p(z)

Generate / Decode
x ∼ p(x|z)

Which latent CVs z give rise to observations x(i)?

Data x(i) ∼ ptarget(x)

CV

Latent

Observed

Encode x with
p(z|x) = p(x|z)q(z)

p(x)
Code / Dictionary

FIGURE 5.1: Conceptual sketch of predictive collective variable dis-
covery with deep Bayesian models. For learning, a Bayesian deep
model with reference data x(i) approximating the target Boltzmann
distribution ptarget(x) is employed. Observed coordinates are en-
coded with the posterior p(z|x). The generative part allows, through
ancestral sampling, the generation of new configurations based on a
latent CV z(i) ∼ p(z) and a decoder p(x|z). The encoder and decoder
learn simultaneously via amortized variational Bayesian inference.
Identifying CVs is thus reformulated to an stochastic optimization

problem.

(ALA-2) based on as few as 50 training data points. We show (Figure 5.2(b)) that
the identified CVs relate to the physically most compact description of ALA-2, that
is, the dihedral angles3. Similar behavior has been demonstrated with a higher-
dimensional alanine peptide consisting of 15 residues: ALA-15. In both examples,
we provide probabilistic estimates of observables augmented by credible intervals.

We reproduce the original publication with permission of AIP Publishing in Ap-
pendix D.

3The dihedral angles of ALA-2 peptide (φ, ψ) are indicated in Figure 5.2(a).
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φ ψ

(a)

φ = -52.1°
ψ = 116.0°

φ = -41.8°
ψ = 106.4°

φ = -45.0°
ψ = -47.0°

φ = -57.0°
ψ = -45.2°

φ = -136.1°
ψ = -70.9°

φ = -143.2°
ψ = 160.6°

φ = -98.1°
ψ = 144.3°

φ = -57.8°
ψ = 133.7°

(b)

FIGURE 5.2: Definition of dihedral angles and predictions given latent
CVs (a) ALA-2 peptide with indicated dihedral angles. (b) Predicted
configurations x(i) with annotated dihedral angle values at z(i) val-
ues are indicated by black filled dots. Moving along the z1 axis, for
the given CVs we obtain atomistic coordinates belonging to different

conformations of ALA-2.
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Chapter 6

Embedded-physics machine
learning for coarse-graining and
collective variable discovery
without data

Boltzmann densities, which are ensemble representations of equilibrium atomistic
systems, are usually explored by molecular dynamics (MD) [11] or Monte Carlo-
based (MC) techniques [502]. These versatile and general simulation techniques
asymptotically guarantee unbiased estimates of observables [328]. However, these
simulation techniques become computationally impractical in cases where the atom-
istic interaction potential exhibits several distinct minima or wells. Such complex
potentials imply multimodal Boltzmann densities. Escaping such a well is rare and
requires overcoming high free-energy barriers, resulting in impractically long simu-
lation times or biased trajectories [506].

Key to exploring such multimodal Boltzmann densities is the recognition of ap-
propriate slow coordinates or collective variables (CVs) that exhibit sensitivity in
transition regions between modes. This requires tremendous physicochemical in-
sight, which is not available per se. CVs, which provide an effective lower-dimen-
sional description of high-dimensional atomistic systems, are key to accelerating the
exploration of multimodal densities by biasing the dynamics to escape deep free-
energy wells [516].

Identifying expressive CVs governing major conformational changes in the ab-
sence of physical insight requires data-driven strategies. However, in many cases,
the identification of CVs requires a dense sample of the target Boltzmann distribu-
tion, as well as unbiased simulation trajectories. This creates a contradiction, as it is
computationally impractical to obtain unbiased trajectories in the presence of mul-
tiple modes [190], restricting the potential use-cases of such approaches. Few non-
linear dimensionality reduction methods coping with low data provide CVs that are
not differentiable with respect to their atomistic counterparts [529–531]; however,
this is required for biasing the dynamics [508, 518–528]. Deep learning approaches
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providing flexible and efficiently differentiable functions have also influenced re-
search on the efficient exploration of multimodal Boltzmann distributions. How-
ever, these build on previously acquired reference data and do not account directly
for the interaction potential that actually drives the MD or MC simulation.

This work provides a novel and fundamentally different perspective on data-
driven deep learning approaches. Instead of relying on two separate process, ac-
quiring data and then employing statistical learning of a model, we synthesize and
embed physics, i.e., the Boltzmann density, with a machine learning objective. The
advocated learning methodology proposes (atomistic) configurations to which the
model is attracted to learn from the potential energy and associated interatomic
forces. The proposed machine learning algorithm does not require any simulation
of the Boltzmann density but only queries the physical model, i.e., the potential
and forces, to gain relevant information by evaluating rather than simulating the
Boltzmann density. The proposed learning algorithm includes a versatile nonlin-
ear dimensionality-reduction routine, which simultaneously discovers relevant CVs
while learning the Boltzmann density. We demonstrate the procedure using a double
well potential and the alanine dipeptide.

The present work differs clearly from recent developments on Boltzmann gener-
ators [240] that rely on invertible neural networks such as RealNVP [437] and NICE
[238]. As it employs invertible neural networks, the dimensionality of the latent
generator must equal the dimensionality of the atomistic configuration, which de-
tains a consistent dimensionality reduction. Generated atomistic realizations of the
employed model in [240] do not reflect the statistics of the reference Boltzmann dis-
tribution and serve instead as an input to a subsequent re-weighting importance
sampling step. However, importance sampling is difficult to monitor if the variance
in the importance weights is low, implying a large effective sample size, when none
of the proposed realizations yield relatively high probabilities as evaluated by the
target density [442]. Furthermore, a good guess of CVs is provided in Boltzmann
generators, which depict physical insights that may not be available. By contrast,
the proposed approach (similar double well example) reveals the effective CVs and
also provides a generator to produce samples that yield the correct statistics of the
target.

In the following Section 6.1, we develop the proposed learning approach based
on KL divergence minimization and derive a tractable upper bound based on hi-
erarchical variational models [533]. We discuss the required gradient computation
and provide a physically interpretable underpinning of the components involved.
After introducing a general model parametrization, we provide an adaptive temper-
ing scheme facilitating a robust machine learning procedure at the end of Section
6.1. The proposed physics-embedding learning procedure for revealing CVs and
obtaining a coarse-grained (CG) model is numerically validated in Section 6.2 with
a double well potential and the alanine dipeptide. We close this paper in Section
6.3, summarizing the main findings of this work and outlining simple but effective
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further extensions and research directions. These include the generalization of the
obtained predictive distribution for predictive purposes at any temperature.

6.1 Methodology

After introducing the notation in Section 6.1.1, we describe the general proposed
framework in Section 6.1.2. A tractable optimization objective is provided in Sec-
tion 6.1.3. We compare the proposed approach with data-driven objectives in Sec-
tion 6.1.4. Relevant model specifications and gradient computations for training are
discussed in Section 6.1.5, and we close with some notes on the actual training pro-
cedure in Section 6.1.6.

6.1.1 Equilibrium statistical mechanics

In equilibrium statistical mechanics, we seek to estimate ensemble averages of ob-
servables a(x) with respect to the Boltzmann density,

〈a〉ptarget(x;β) =
∫
Mf

a(x)ptarget(x; β) dx. (6.1)

We denote the Boltzmann distribution, for which we aim to learn an efficient ap-
proximation, by ptarget(x; β):

ptarget(x) =
1

Z(β)
e−βU(x)︸ ︷︷ ︸

π(x;β)

(6.2)

=
π(x; β)

Z(β)
.

In Equation 6.2, Z(β) =
∫

e−βU(x)dx is the partition function or normalization con-
stant, and β = 1

kBT is the reciprocal or inverse temperature with the Boltzmann con-
stant kB and the temperature T. The interatomic potential U(x) depends on gen-
eralized atomistic coordinates denoted by x ∈ Mf ⊂ Rnf , with nf = dim(x). In
equilibrium statistical mechanics, we are usually interested in phase averages at dis-
tinct constant temperatures; however, we will also demonstrate how to utilize the
temperature to introduce an auxiliary sequence of target distributions to facilitate
learning the actual target distribution. The auxiliary sequence stabilizes the param-
eter learning inspired by annealing [534, 535] and adaptive sequential MC [205].

6.1.2 Coarse-graining through probabilistic generative models

Data-driven coarse-graining methodologies are based on a limited set of N real-
izations obtained from the target density ptarget(x). The realizations x(i) are pro-
duced by drawing samples from ptarget(x): x(i) ∼ ptarget(x) with Markov Chain
MC (MCMC) methods [306, 450] and/or, especially in the context of biochemical
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atomistic systems, by MD simulations [14, 88]. Both methodologies yield a dataset
xDN = {x(i)}N

i=1, which approximates the target distribution with

ptarget(x) ≈ p̃(x)

∝
N

∏
i=1

δ(x(i) − x). (6.3)

The above approximation, given independent and identically distributed samples,
may sufficiently resemble simple systems. However, atomistic many-body systems
exhibit higher-order and long-range interactions [48, 97] involving multiple free en-
ergy modes separated by high barriers [106, 131]. Therefore, the collection of suf-
ficient data becomes an insurmountable task: a protein folding process may take
microseconds versus a time discretization of femtoseconds [536]. Given limited com-
putational power, the relevant conformations and transitions are not guaranteed to
be reflected by the reference simulation [537].

The quality of data-driven learning approaches depends strongly on the quality
of the available set of reference data xDN . If, e.g., in the case of peptides, certain
conformations are missed, it is an almost insurmountable challenge to obtain a data-
driven model exploring such missed configurations [124, 538]. Enhanced sampling
methods [508, 518–528] can support the exploration of the configuration space, while
the efficiency crucially depends on the quality of utilized CVs [263, 517].

Instead of relying on reference data, which may be a distorted representation
of ptarget(x), or gradually exploring the configuration space by enhanced sampling,
we present a variational approach that learns the target distribution ptarget(x) by
querying the unnormalized distribution π(x) or the corresponding potential energy
U(x) (see Equation 6.2).

We are first interested in identifying latent CVs z (z ∈ Mc ⊂ Rnc) depending on
the fully atomistic picture x, which encode physically relevant characteristics (e.g.,
coordinates along transition regions between conformations) and provide insight
into the unknown atomistic system we seek to explore. Second, we seek to identify
a CG model expressed in terms of the latent CVs z that is predictive but neverthe-
less facilitates reasoning about all-atom coordinates x [375]. The obtained CG model
is expected to serve as an approximation to ptarget(x) to enable the efficient com-
putation of the expectations of observables (Equation 6.1) and most importantly to
capture relevant configurations in the free energy landscape that were inaccessible
by brute-force MD or MCMC approaches [539]. Fulfilling the latter requirement also
implies capturing statistics of ptarget(x).

The CVs z serve as latent generators of the higher-dimensional generalized co-
ordinates x, where we seek dim(z) � dim(x). This generative process is expressed
with two components,

(i) the conditional density qθcf(x|z), parametrized by θcf,

(ii) and the density over the latent CVs qθc(z).
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Combining both densities gives the following joint:

qθ(x, z) = qθcf(x|z)qθc(z). (6.4)

Assuming we have obtained the optimal parameters θopt after a training process
based on an objective, which we will discuss later in this section, we can utilize the
model for predictive purposes. This can be done by ancestral sampling [442], i.e.,
first draw z(i) ∼ qθopt(z) and second x(i) ∼ qθopt(x|z(i)).

For obtaining optimal parameters θ, many methods rely on minimizing a dis-
tance from the target distribution ptarget(x) to the marginal distribution qθ(x), which
is given by:

qθ(x) =
∫

qθ(x, z) dz =
∫

qθcf(x|z)qθc(z) dz. (6.5)

A commonly employed metric expressing the deviation between two densities is
the Kullback–Leibler (KL) divergence, which belongs to the family of α-divergences
[376–378]:

DKL
(

ptarget(x)‖qθ(x)
)
= −

∫
ptarget(x) log

qθ(x)
ptarget(x)

dx

= − 〈log qθ(x)〉ptarget(x) +
〈
log ptarget(x)

〉
ptarget(x)︸ ︷︷ ︸

−H(ptarget)

. (6.6)

Minimizing Equation 6.6 with respect to θ leads to qθ(x) being closer to ptarget(x).
However, in practice, the expectations in Equation 6.6 are intractable:

(i) the marginal qθ(x) requires the integration with respect to z which is intractable
itself and

(ii) the involved expectation with respect to ptarget(x), 〈·〉ptarget(x) is analytically in-
tractable since the normalization constant of ptarget(x) is unavailable (which
would require solving an integral with respect to x).

Considering the above challenges, the latter could be addressed by approximating
ptarget(x) with data or samples xDN and thus approximating the corresponding ex-
pectations with MC estimators. However, as we deal with complex multimodal
Boltzmann densities ptarget(x), the data generating process (MCMC or MD) may
miss relevant modes. By employing a biased set of samples or data not approxi-
mating ptarget(x) [295], we learn a biased estimator not approximating ptarget(x). The
generation of the training dataset is thus decoupled from the learning process.

To circumvent the data-generating process and thus sampling from ptarget(x), we
propose employing the other extreme of the family of α-divergences (as compared
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to Equation 6.6), the reverse KL divergence:

DKL
(
qθ(x)‖ptarget(x)

)
= −

∫
qθ(x) log

ptarget(x)
qθ(x)

dx

= Eqθ(x) [log qθ(x)]︸ ︷︷ ︸
−H(q(x))

−Eqθ(x)
[
log ptarget(x)

]
= −Eqθ(x)

[
log ptarget(x)

]
−H(q(x)). (6.7)

Minimizing Equation 6.7 with respect to θ requires maximizing the log-likelihood
log ptarget(x) assessed under qθ(x) (first component in Equation 6.7), and the maxi-
mization of the entropy of qθ(x), H(q(x)) (second component in Equation 6.7). Min-
imizing the reverse KL divergence balances the two terms, as maximizing only the
log-likelihood log ptarget(x) assessed under qθ(x) would result in a degenerate case
where qθ(x) would become a Dirac-delta placed at the (global) maximum of ptarget(x)
obtained at the (global) minimum of U(x). The second component implies a regu-
larization favoring a parametrization θ such that the entropy of qθ(x) is maximized.

6.1.3 Inference and learning

In what follows, we use the negative of the KL divergence in Equation 6.7 to be max-
imized, which we denote with L for the sake of comparability with other learning
approaches [407, 436]. At the end of this section, we compare the presented me-
thodology with data-driven approaches relying on the forward KL divergence [406,
407, 409] and especially those addressing coarse-graining problems [415, 540–542].

The objective to be maxmized is

L(θ) = Eqθ(x)
[
log ptarget(x)− log qθ(x)

]
, (6.8)

where we can draw samples from qθ(x) as we can wisely select tractable hierarchical
components composing to qθ(x). The optimization of the first component in L(θ)
relating to the log-likelihood is tractable as the normalization of ptarget(x) does not
depend on the parameters θ and thus being able to evaluate π(x) or U(x) suffices.
However, the entropy term is not tractable ad-hoc as it involves the marginal qθ(x) =∫

qθcf(x|z)qθc(z) dz, posing in most cases an intractable or least cumbersome task.
Therefore, we seek to construct a tractable lower bound on H(x) as presented in

[533] by introducing an auxiliary density rφ(z|x) parametrized by φ and write:

−Eq(x) [log q(x)] = −Eq(x)

log q(x) + DKL (q(z|x)‖q(z|x))︸ ︷︷ ︸
=0


≥ −Eq(x)

[
log q(x) + DKL

(
q(z|x)‖rφ(z|x)

)]
= −Eq(x)

[
Eq(z|x)

[
log q(x) + log q(z|x)− log rφ(z|x)

]]
. (6.9)
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Adding DKL (q(z|x)‖q(z|x)) in the first line of Equation 6.9 has no influence as the
term is equal to zero. It involves the posterior distribution over the latent variables
z, q(z|x) = q(x,z)

q(x) , which is intractable. By utilizing an auxiliary distribution rφ(z|x),
the equality becomes an inequality as a consequence of DKL

(
q(z|x)‖rφ(z|x)

)
≥ 0

for rφ(z|x) deviating from q(z|x). Replacing the exact log-posterior log q(z|x) by

log q(z|x) = log q(z) + log q(x|z)− log q(x), (6.10)

it follows that

−Eq(x) [log q(x)] ≥−Eq(x)

[
Eq(z|x)

[
log q(x) + log q(z) + log q(x|z)

− log q(x) − log rφ(z|x)
]]

=−Eq(x)

[
Eq(z|x)

[
log q(z) + log q(x|z)− log rφ(z|x)

]]
. (6.11)

Rewriting the expectation Eq(x)

[
Eq(z|x) [·]

]
as Eq(x,z) [·], Equation 6.11 depicts a trac-

table lower bound on the entropy term. Maximizing the lower bound in Equation
6.11 with respect to φ minimizes DKL (q(z|x)‖r(z|x; φ)) and thus tightens the bound
on the entropy term. As mentioned earlier, the optimum1 is obtained when we
identify the exact posterior of the latent CVs q(z|x) with r(z|x; φopt) = q(z|x), thus
DKL (q(z|x)‖r(z|x; φopt)) = 0. Utilizing the obtained bound in Equation 6.11, the
objective L(φ, θ) from Equation 6.8 becomes:

L(φ, θ) = Eq(x,z;θ)
[
log ptarget(x)− log qθc(z)− log qθcf(x|z) + log rφ(z|x)

]
. (6.12)

The following shows the connection between the obtained objective and the KL
divergence defined between the joint q(x|z)q(z) and ptarget(x)r(z|x) acting on the
extended probability space:

L(φ, θ) = Eq(x,z;θ)
[
log ptarget(x)− log q(z)− log q(x|z) + log rφ(z|x)

]
= Eq(x,z;θ)

[
log

ptarget(x)rφ(z|x)
qθcf(x|z)qθc(z)

]
(6.13)

= −DKL
(
qθcf(x|z)qθc(z)‖ptarget(x)rφ(z|x)

)
. (6.14)

1The optimum with respect to rφ(z|x) and thus φ that tightens the lower bound.
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Based on Equation 6.13 and Equation 6.14, we show how the objective separates into
two KL divergence terms:

DKL
(
q(x|z)q(z)‖ptarget(x)r(z|x)

)
= −Eq(z)

[
Eq(x|z)

[
log

ptarget(x)rφ(z|x)
q(z|x)q(x)

]]
= −Eq(x)

[
log

ptarget(x)
q(x)

]
−Eq(z)q(x|z)

[
log

rφ(z|x)
q(z|x)

]
= DKL

(
q(x)‖ptarget(x)

)
+ DKL

(
q(z|x)‖rφ(z|x)

)
≥ DKL

(
q(x)‖ptarget(x)

)
(6.15)

As mentioned earlier, the lower bound on L(φ, θ) or upper bound on
DKL

(
qθcf(x|z)qθc(z)‖ptarget(x)r(z|x)

)
becomes tight when r(z|x; φopt) = q(z|x), which

is Equation 6.15. Suboptimal φ imply bounds on the objective owing to the positiv-
ity of DKL

(
q(z|x)‖rφ(z|x)

)
≥ 0.

The advantage of the proposed method for identifying CVs and learning a pre-
dictive coarse-graining model becomes clearer when we directly utilize the reference
potential energy U(x) (which we assume to be available in this paper). The objective
L(φ, θ), which is the negative KL divergence defined by the joint distributions, is
subject to maximization with respect to the parameters θ and φ:

L(φ, θ) = −DKL
(
qθc(z)qθcf(x|z)‖ptarget(x)rφ(z|x)

)
=
〈
log ptarget(x)

〉
qθ(x,z) +

〈
log

rφ(z|x)
qθc(z)qθcf(x|z)

〉
qθ(z,x)

= −β 〈U(x)〉qθ(x,z) +

〈
log

rφ(z|x)
qθc(z)qθcf(x|z)

〉
qθ(z,x)

(6.16)

Maximizing Equation 6.16 solely involves expectations with respect to the gener-
ative model, from which it is easy to draw samples from. Explicitly there are no
expectations with respect to the target density ptarget(x), which would require an ap-
proximation with data. Instead of data, the target density ptarget(x) contributes to the
learning of the parameters (φ, θ) through the interatomic potential energy U(x) as-
sessed for samples of the generative model q(x|z)q(z). Note that the normalization
constant of ptarget(x) is independent of φ and θ and has been omitted in Equation
6.16. We are aware that the method requires a potential energy function U(x), which
can be assessed at x. This is always the case for systems where we can set up MD
or MCMC simulations, although we do circumvent the need to simulate a trajectory
or draw reference samples by directly incorporating the available physics expressed
by the potential energy.

6.1.4 Reverse or forward KL divergence?

In the following, we point out commonalities and differences between the proposed
approach relying on the reverse KL divergence as introduced in Equation 6.7 and the
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forward KL divergence (Equation 6.6). The latter has been successfully employed
for the development of coarse-graining methodologies [540–542] and with a focus
on CV discovery in combination with predictive coarse-graining in [415].

The data-driven objective is based on minimizing the following KL divergence:

DKL
(

ptarget(x)‖qθ(x)
)

. (6.17)

Reformulating the minimization of Equation 6.17 to a maximization problem, the
lower bound based on the summation over terms corresponding to each datum x(i)

of a set of xDN =
{

x(i)
}N

i=1
is written as:

Lforward(θ, φ; xDN ) =
N

∑
i=1

Erφ(z(i)|x(i))
[
− log rφ(z(i)|x(i)) + log qθ(x(i), z(i))

]
=−

N

∑
i=1

DKL

(
rφ(z(i)|x(i))‖qθ(z(i))

)
+

N

∑
i=1

Erφ(z(i)|x(i))
[
log qθ(x(i)|z(i))

]
. (6.18)

The objective above depicts the lower bound on the marginal log-likelihood and has
been constructed in the context of data-driven variational inference [357, 406, 407].
The first component in Equation 6.18 implies minimizing DKL

(
rφ(z(i)|x(i))‖qθ(z(i))

)
in an aggregation of all considered x(i). Hence, in aggregation the pre-images of x(i),
expressed by the approximate posterior, should resemble the generative component
qθ(z), whereas the latter term in Equation 6.18 accounts for the reconstruction loss
of encoded pre-images z(i) (encoded through rφ(z(i)|x(i))) to its origin x(i)).

Minimizing the reverse KL divergence as introduced in Equation 6.7 with

DKL
(
qθ(x)‖ptarget(x)

)
implies a tractable maximization with respect to (φ, θ) of the following objective
based on [533]:

L(φ, θ) = −β 〈U(x)〉qθ(x,z)︸ ︷︷ ︸
∗

+Eqθ(x,z)
[
log rφ(z|x)

]︸ ︷︷ ︸
†

+H(qθ(x, z))︸ ︷︷ ︸
‡

. (6.19)

We comment on the meaning of the indicated terms in Equation 6.19; however, note
that the optimization always needs to be regarded in the composition of all terms.

∗) Maximizing L(φ, θ) seeks to minimize β 〈U(x)〉qθ(x,z), which corresponds to
the average potential energy of the system evaluated under the generative mo-
del qθ(x).

†) Maximize the expected log-probability that a given fine-scale realization x(i)

(with the corresponding latent pre-image z(i) ) drawn from the joint of the
generative model, qθ(x, z), can be reconstructed by rφ(z|x) based on x(i).
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‡) Maximize the entropy of the generative model H(qθ(x, z)).

Note that all aforementioned contributions must be seen in the composition, and
maximizing L(φ, θ) with respect to (φ, θ) maximizes the balance of all. Most impor-
tant is that the involved objective in the reverse KL divergence does not encompass
any expectations with respect to ptarget(x), which need to be approximated by data
as is the case in Lforward(θ, φ; xDN ).

We discuss in the next section the particulars of the optimization with respect to
θ, φ, and also specify the form of the densities involved, i.e., qθ and rφ.

6.1.5 Model specification and gradient derivation

In the sequel we introduce a general approach for parametrizing distributions qθ(x, z)
and rφ(z|x) and provide an approach for optimizing parameters with variance-
reduction methods, enabling accelerated convergence.

Model specification

We base the model specification on previous work in the context of data-driven CVs
discovery [415]. The model involves two components, (q(x|z) and q(z)), with respect
to the generative path and the encoder r(z|x) in the recognition path.

As we seek to obtain a set of lower-dimensional coordinates representing char-
acteristic and slow coordinates of the system, we aim to provide complexity in the
mapping and thus the encoder and decoder components r(z|x) and q(x|z), respec-
tively, and simple descriptions of the CVs through q(z). Pushing complexity to the
involved mappings and assuming simple correlations in q(z) yields CVs capturing
the most relevant features of the atomistic system compressed in low dimensions
[543, 544].

The distribution qθc(z), which the obtained CVs are supposed to follow and
which we desire to be simple, is represented as a standard Gaussian with unit di-
agonal variance:

qθc(z) = q(z) = N (z; 0, I). (6.20)

The simplicity induced by Equation 6.20 is balanced by employing a flexible map-
ping given latent CVs z to fine-scale atomistic coordinates x (probabilistic decoder)
with

qθcf(x|z) = N (x; µθcf(z), Sθcf) , (6.21)

where the nonlinear mapping

µθcf(z) = f µ
θcf
(z), (6.22)

with z 7→ f µ
θcf
(z) ( f µ

θcf
: Rnc 7→ Rnf) is expressed by a flexible (multilayer) neural net-

work [428–430]. The Gaussian in Equation 6.21 with the flexible mean µθcf(z) is then
fully defined by considering a diagonal covariance matrix with Sθcf = diag(σ2

θcf
)
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[417]. We omit the subscripts of θ, as the latent generator q(z) does not depend on
parameters. Thus, we write θ = θθcf . We treat the entries σ2

θ,j directly as parameters
without dependence on latent CVs z. Maintaining σ2

θ,j > 0 is ensured by optimizing
log σ2

θ,j instead.
In a similar fashion, compared to the model of qθcf(x|z), we express the encoder

that approximates the actual posterior distribution p(z|x) as follows:

rφ(z|x) = N
(
z; µφ(x), Sφ(x)

)
, (6.23)

with the diagonal covariance matrix Sφ(x) = diag
(

σ2
φ(x)

)
. Likewise, µφ(x) and

log σ2
φ(x) are obtained from encoding neural networks f µ

φ(x) and f σ
φ (x), respec-

tively:
µφ(x) = f µ

φ(x) and log σ2
φ(x) = f σ

φ (x). (6.24)

The actual but intractable posterior q(z|x) will differ from a multivariate normal dis-
tribution, for which we compensate by providing a flexible mean in rφ(z|x). Struc-
tural correlations revealed by a full rank covariance matrix represent an interesting
avenue to be explored [545]; however, this is not part of this paper. The employed
models resemble those developed earlier in the context of CV discovery. Therefore,
we refer to the discussion in [415] justifying the use of the neural networks.

We utilize the following general structure for the decoding neural network f µ
θcf
(z):

f µ,Kq
θ (z) =

(
l(Kq+1)
θcf

◦ ã(Kq) ◦ l(Kq)
θ ◦ · · · ◦ ã(1) ◦ l(1)θ

)
(z). (6.25)

with Kq hidden layers. In a similar manner, we define the encoding networks for
µφ(x) and σ2

φ(x) of rφ(z|x):

f Kr
φ (x) =

(
a(Kr) ◦ l(Kr)

φ ◦ · · · ◦ a(1) ◦ l(1)φ

)
(x), (6.26)

which leads to the mean and diagonal terms of the covariance matrix with

f µ
φ(x) = l(Kr+1)

φ

(
f Kr
φ (x)

)
and f σ

φ (x) = l(Kr+2)
φ

(
f Kr
φ (x)

)
. (6.27)

The linear layers used in the above expressions are denoted as l(i), e.g., mapping a
variable y to the output with l(i)(y) = W (i)y + b(i). The nonlinearities in f (·)

(·) are
implied by activation a(·). Encoding and decoding functions are indicated by the
superscripts φ and θ, respectively. Activation functions belonging to the encoder
are a(i), and those involved in decoding z are ã(i). The size of W (i) is specified by
the input dimension, which could be the output of a precedent layer l(i−1)(y), and
the output dimension, which we specify with dl(i) . This leads to a matrix W (i) of di-
mension dl(i) × dl(i−1) . The corresponding parametrization details with depth K and
activations of the networks are specified with the corresponding numerical illustra-
tions in Section 6.2.
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Gradient computation and reparametrization

This section is devoted to deriving relevant gradients of the objective L(φ, θ) in
Equation 6.12, which involve the fine-scale potential energy U(x). We show a noise-
reducing gradient estimator by utilizing reparametrization [408, 546].

The focus is on the first component in Equation 6.12, which depends only on the
parameters θ. We write for the corresponding derivative:

−β
∂

∂θ
〈U(x)〉qθ(x|z) =− β

∂

∂θ

∫ ∫
qθ(x|z)q(z)U(x) dx dz

=− β
∫

q(z)
∂

∂θ

(∫
qθ(x|z)U(x) dx

)
︸ ︷︷ ︸

∇θEqθ(x|z)[U(x)]

dz. (6.28)

In the last line of the above equation, we note the expression ∇θEqθ(x|z) [U(x)]; this
is for the case of using approximate MC estimators, highly affected by noise, as
discussed in [406]. This would hamper the optimization even when employing sto-
chastic techniques. The variance of the approximate estimator of ∇θEqθ(x|z) [U(x)]
can be reduced by the reparametrization of qθ(x|z). This is done by introducing an
auxiliary random variable ε, which gives rise to x by a differentiable transformation:

x = gθ(ε; z) with ε ∼ p(ε). (6.29)

With the mapping, gθ : ε→ z, the following holds by change of variables:

qθ(x|z) = p
(

g−1
θ (x; z)

)∣∣∣∣∂g−1
θ (x; z)

∂x

∣∣∣∣, (6.30)

where the inverse function of gθ, g−1
θ : x → ε leads to ε = g−1

φ (x; z). Different pos-
sibilities of auxiliary distributions and invertible transformations are discussed in
more detail in [547]. With the introduced transformation, we can rewrite the deriva-
tive with:

∇θEqθ(x|z) [U(x)] = Ep(ε) [∇θU (gθ(ε; z))]

= Ep(ε)

[
∂U (gθ(ε; z))

∂x
∂gθ(ε; z))

∂θ

]
. (6.31)

The auxiliary random variables ε follow a Gaussian with ε(l) ∼ p(ε) = N (0, I). The
corresponding transformation for representing the random variables x is:

x = gθ(ε; z) = µθ(z) + σθ(z)� ε. (6.32)
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Replacing the expression∇θEqθ(x|z) [U(x)] in Equation 6.28 with Equation 6.31 leads
to:

−β
∂

∂θ
〈U(x)〉qθ(x|z) = −β

〈
Ep(ε)

[
∂U (gθ(ε; z))

∂x
∂gθ(ε; z))

∂θ

]〉
q(z)

= −β

〈
∂U (gθ(ε; z))

∂x︸ ︷︷ ︸
=−F(x)

∂gθ(ε; z))
∂θ

〉
p(ε)q(z)

. (6.33)

First, the physically less interesting part in Equation 6.33 is the contribution ∂gθ(ε;z))
∂θ ,

which can be estimated by employing efficient backpropagation and automatic dif-
ferentiation algorithms for neural networks [428, 548]. However, the more physically
relevant component, the gradient of the atomistic potential, ∂U(gθ(ε;z))

∂x , is involved in
Equation 6.33. The gradient of the potential U(x) with respect to x equals the neg-
ative interatomic force F(x), evaluated at x, where x = gθ(ε; z). This latter term
incorporates physics into the gradient computation of L(φ, θ) in the form of inter-
atomic forces. This is the source from which physics are embedded into our pro-
posed model and drives the optimization of L(φ, θ) by querying the force field at
samples of qθ(x). Notably, the forces are incorporated at atomistic positions x, which
are determined by sampling as follows.

(i) Draw a sample from the generative distributions: z(i) ∼ q(z) which is simple
to sample from.

(ii) Then obtain a sample from the auxiliary distribution: ε(j) ∼ p(ε).

(iii) Determine the corresponding atomistic representation of (z(i), ε(j)) with: x(i,j) =
gθ(ε

(j); z(i)) = µθ(z(i)) + σθ(z(i))� ε(j).

This means we evaluate the force F at samples x(i,j); no reference data are required
in this process.

The force evaluation at atomistic coordinates x is the heart of common MD soft-
ware such as LAMMPS [315], GROMACS [316–322], and OpenMM [44]. The MD
simulators are highly sophisticated in terms of efficiency and allow us to employ
this optimized force evaluation function in our development.

In this work, we develop a PyTorch module that incorporates OpenMM [44] in
the backward pass, which enables efficient optimization by querying the forces com-
puted by OpenMM at input positions governed by qθ(x). We are continuously de-
veloping the software on GPU platforms, and it will be made available2.

6.1.6 Training

Training the model parameters (φ, θ) requires some attention as variational models
tend to be mode-focusing [356, 489]. If parameters update too rapidly, in terms of

2Software available upon publication on https://github.com/ms.../....

https://github.com/ms.../...
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configurations of ptarget(x) that have been explored by qθ(x) thus far, relevant confor-
mations could be missed. However, compared with the data-driven approach, the
proposed variational coarse-graining methodology offers strategies ensuring that
relevant conformations are captured and incorporates querying of the potential U(x)
into the learning procedure. In data-driven schemes, once the data is obtained, there
is no control on exploring unobserved conformations [190, 544]. Remedy, next to
employing stochastic optimization with adaptive step size control [412], provide
tempering approaches [458, 549]. These start at high initial temperatures or low
inverse temperatures, with, e.g., 0 ≤ β1, whereas β = 0 resembles a uniform tar-
get distribution. A sequence of K temperatures and related inverse temperatures
0 ≤ β1 · · · ≤ βk ≤ . . . βK yields a sequence of target distributions with [462–464]

ptarget(x; βk) =
1

Z(βk)
e−βkU(x), ∀ k ∈ {1, . . . , K}, (6.34)

while βK equals the target simulation temperature βtarget.
Instead of directly minimizing DKL

(
q(x)‖ptarget(x; βtarget)

)
, we minimize subse-

quent DKL
(
q(x)‖ptarget(x; βk)

)
while we obtain optimal (φk, θk), which we use as

initial parameters for minimizing DKL
(
q(x)‖ptarget(x; βk+1)

)
. However, the size of

the increment between two subsequent temperature steps ∆βk = βk+1 − βk is a dif-
ficult choice.

Therefore, we develop an adaptive scheme for gradually increasing βk, which
adjusts the proposed ∆βk such that the relative difference in subsequent KL diver-
gences estimated at βk and βk+1 does not exceed a threshold cmax. We define the
relative increase of the KL divergence between βk and βk+1 with:

DKL
(
q(x)‖ptarget(x; βk+1)

)
− DKL

(
q(x)‖ptarget(x; βk)

)
DKL

(
q(x)‖ptarget(x; βk)

) . (6.35)

By employing the derived upper bound on the KL divergence, which is defined in
Equation 6.16, we can rewrite Equation 6.35 as

ck =
log(Z(βk+1))− log(Z(βk)) + (βk+1 − βk) 〈U(x)〉q(x,z)

log Z(βk) + βk 〈U(x)〉q(x,z) − 〈log r(z|x)〉q(x,z) −H(q(x, z))
. (6.36)

Besides the (log-)difference of the normalization constants, log(Z(βi+1))− log(Z(βi)),
and log(Z(βk), all remaining components in Equation 6.36 are accessible through
MC estimators. The supporting material in Appendix E.2 includes an approxima-
tion of log(Z(βk+1)) − log(Z(βk) and log(Z(βk). The procedure for updating the
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temperature is summarized in Algorithm 4.

Algorithm 4: Tempering scheme for updating βk. We set ∆βmax =

1.0× 10−3 and cmax = 1.0.
Input: Converged model with its parameter (φk, θk) at current inverse

temperature βk; cmax, maximal relative increase in DKL; ∆βmax, the
temperature increment; Current step k.

Output: βk+1

1 Initialize: s := 0, fs := 1.0.
2 while cs

k > cmax do
Propose new inverse temperature βs

k+1:
3 βs

k+1 = βk + fs∆βmax

Estimate rel. increase cs
k with proposed βs

k+1:
4 See computation in Equation 6.36.

Update fs for proposing a new maximal increase in β:
5 fs+1 = 0.6 fs

Update step:
6 s = s + 1.

7 Set: βk+1 = βs
k+1

8 Update: k = k + 1
9 Continue optimization with: log ptarget(x; βk) ∝ eβkU(x)

6.2 Numerical illustrations

The following section demonstrates the developed methodology based on a double
well potential in Section 6.2.1 and an alanine dipeptide in Section 6.2.2.

6.2.1 Double well

This section shows the capabilities of the proposed method in the context of a two-
dimensional double well potential energy function U(x) (dim(x) = 2) that exhibits
two distinct modes distinguishable in the x1 direction. One of the modes is favorably
explored owing to its lower potential energy. The potential is quadratic in the x2

direction, as depicted in Figure 6.1:

U(x) =
1
4

x4
1 − 3 · x2

1 + x1 +
1
2

x2
2. (6.37)

The double well potential in Equation 6.37 and the implied target distribution
ptarget(x; β = 1) ∝ e−βU(x) result in a distribution that is challenging to explore with
purely random walk MCMC and without performing extensive fine-tuning of the
proposal step. A test MCMC estimator, which was as fair as possible, did not dis-
cover the second mode for x1 > 0 after 1× 105 steps. The natural CV of the potential
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FIGURE 6.1: Reference potential energy U(x). The color relates to
the value of U(x) quantified by the logarithmic color bar on the right.
Most MCMC random walk approaches will discover only one of the

depicted potential energy basins.

U(x) and thus of ptarget(x) ∝ e−U(x) is the x1 coordinate. The x1 direction distin-
guishes the two modes that ptarget(x) exhibits. We expect our algorithm to reveal
CVs z “equal” to x1 or having high correlation with x1. We put “equal” in quotes as
we work in a probabilistic framework. The dimensionality of dim(z) is 1.

The functional form and parameters have been taken from [240] to ensure com-
parability. However, note that we seek to identify simultaneously the lower-dimen-
sional characteristics revealing the relevant physics, encoded in CVs, and obtain a
generative CG model for predictive purposes. In [240], the focus was on the genera-
tive component. The CVs utilized for learning are selected rather than revealed from
the physics. The latent CVs z have the same dimensionality as x owing to the use of
invertible neural networks that require dim(z) = dim(x) [437].

We employ the model as introduced in Section 6.1.5 and define the unspecified
options such as the number of layers, layer dimensions, and activation functions
used in the encoder and decoder as in Tables 6.1 and 6.2, respectively. To train the
parameters (φ, θ), we employ a tempering scheme as introduced in Section 6.1.6 and
specified in Algorithm 4 with initial β0 = 1× 10−10, while the target is defined with
βK = 1. For all numerical illustrations, we employ ADAM stochastic optimization
[472] with α = 0.001, β1 = 0.9, β2 = 0.999, and εADAM = 1.0× 10−8. The expecta-
tions with respect to q(x, z) are computed based on J = 1000 samples.

We will assess the trained model with respect to its predictive power and the
obtained CVs in the following.
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Linear
layer

Input dimen-
sion

Output
dimension

Activation
layer

Activation
function

l(1)φ dim(x) = 2 d1 a(1) SeLu3

l(2)φ d1 d2 a(2) SeLu

l(3)φ d2 d3 a(3) TanH

l(4)φ d3 dim(z) None -

l(5)φ d3 dim(z) None -

TABLE 6.1: Network specification of the encoding neural network
with d{1,2,3} = 100.

Linear
layer

Input dimen-
sion

Output
dimension

Activation
layer

Activation
function

l(1)θ dim(z) = 1 d3 ã(1) Tanh
l(2)θ d3 d2 ã(2) Tanh
l(3)θ d1 dim(x) None -

TABLE 6.2: Network specification of the decoding neural network
with d{1,2,3} as defined in Table 6.1.

Predictive CG model

Figures 6.2 and 6.3 show intermediate results obtained while training the model.
The left columns depict a two-dimensional (2D) histogram containing the target his-
togram based on a long reference simulation obtained by employing the Metropolis-
adjusted Langevin algorithm [451] at β = 1. Next to the histogram of ptarget(x; β =

1), we provide 2D histograms of intermediate predictions at βk, as indicated in the
sub-caption. The predictive histograms are obtained by drawing J samples from the
predictive distribution qθ(x). The latter is very simple and computationally efficient
owing to the use of ancestral sampling [442] of the generative model, as explained in
the Section 6.1.2. The right columns of Figures 6.2 and 6.3 provide the reference po-
tential energy U(x1, x2 = 0), the intermediate target potential βkU(x1, x2 = 0), and
the predicted potential Upred

k (x1, x2 = 0) after convergence of (φ, θ) at temperature
βk. For the intermediate steps, we estimate Upred

k (x1, x2 = 0) as follows:

Upred
k (x1, x2 = 0) ∝ − 1

βk
log qθ(x1, x2 = 0). (6.38)

We note that the evaluation of log qθ(x1, x2 = 0) requires approximation of the inte-
gral log qθ(x1, x2 = 0) =

∫
q(x|z)q(z) dz, which induces noise. The aforementioned

integral has been approximated by N = 5000 samples drawn from q(z).
Figure 6.4(a) shows the overall convergence of the model, expressed in the form

of the reverse KL divergence (Equation 6.7) and the forward KL divergence (Equa-
tion 6.6); the latter, which relies on the data, is only used for illustrative purposes.
Data for evaluating DKL

(
ptarget(x)‖qθ(x)

)
were not used in the training process. We



112
Chapter 6. Embedded-physics machine learning for coarse-graining and collective

variable discovery without data

compare reference statistics (again based on data which were not used during train-
ing) with statistics estimated based on the efficient predictive distribution qθ(x) in
Figure 6.4(b)

Predictive collective variables

The proposed approach provides an efficient CG model that can be employed for
predictive purposes, as described in the previous section. We claim that in addition
to obtaining a CG model, we can provide relevant insights by identifying CVs of the
system. In the double well example, one would expect the CV to be the x1 coordinate
that separates the two modes, where conformational changes are implied by moving
along x1.

To visualize the assigned CVs given samples x(i) ∼ qθ(x), we plot samples as
dots in Figure 6.5, while the color of the x(i) is assigned based on the corresponding
value of the CV. We note that for every x(i) there exists a whole distribution of CVs
rφ(z|x(i)), as we work in a probabilistic framework. The assigned color in Figure 6.5
is based on the mean of rφ(z|x(i)), which is obtained by evaluating µφ(x(i)).

The (color) gradient of z with respect to x is almost exactly parallel to the x1-
direction, which implies that the revealed CV z is (probabilistically) parallel to the x1

axis and thus meets our expectations. The proposed approach reveals the relevant,
slow, CV x1 solely by evaluating U(x) under qθ(x).



6.2. Numerical illustrations 113

(a) Histogram of qθ(x) at β ≈ 0 and of
ptarget(x).

(b) U(x1, x2 = 0) at β ≈ 0.

(c) Histogram of qθ(x) at β ≈ 0.2 and of
ptarget(x).

(d) U(x1, x2 = 0) at β ≈ 0.2.

(e) Histogram of qθ(x) at β ≈ 0.36 and of
ptarget(x).

(f) U(x1, x2 = 0) at β ≈ 0.36.

FIGURE 6.2: The left column shows histograms of the target ptarget(x)
(at β = 1) and predictions based on qφ(x) at the indicated tempera-
ture β in the subcaptions. The right column shows a 1D slice through
the potential energy U(x) at x2 = 0, emphasizing the two distinct
modes. The figures include the reference potential for the indicated
temperature βk with βkU(x) and an estimation of Upred

k (x) based on
qθ(x).
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(a) Histogram of qθ(x) at β ≈ 0.7 and of
ptarget(x).

(b) U(x1, x2 = 0) at β ≈ 0.7.

(c) Histogram of qθ(x) at β ≈ 1 and of
ptarget(x).

(d) U(x1, x2 = 0) at β ≈ 1.

FIGURE 6.3: The left column shows histograms of the target ptarget(x)
(at β = 1) and predictions based on qφ(x) at the indicated tempera-
ture β in the subcaptions. The right column shows a 1D slice through
the potential energy U(x) at x2 = 0, emphasizing the two distinct
modes. The figures include the reference potential for the indicated
temperature βk with βkU(x) and an estimation of Upred

k (x) based on
qθ(x).
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sponding x1 and x2 directions.

FIGURE 6.4: Convergence of the KL divergences (left) and predicted
statistics compared with reference estimates (right).

(a) β ≈ 0 (b) β ≈ 0.36

(c) β ≈ 0.7 (d) β ≈ 1

FIGURE 6.5: Samples x(i) ∼ qθ(x) at the indicated temperature β are
depicted as dots, whereas the assigned color of x(i) corresponds to its
latent CV obtained by the mean of rφ(z|x(i)). The color bar below the
images shows the color corresponding to the assigned value of the

CV z given x. The figure is based on N = 1× 104 samples x(i).
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φ ψ

(a) Dihedral angels for ALA-2.

β-1 β-2

α

β-2β-1

(b) Characteristic conformations accord-
ing [500].

FIGURE 6.6: Dihedral angles (left) and (φ, ψ) statistics of a reference
simulation with characteristic modes (right).

6.2.2 ALA-2

After demonstrating the functionality of the proposed scheme for a double well po-
tential energy, we are interested in addressing an atomistic system. The following is
devoted to the CV discovery of alanine dipeptide (ALA-2) in the context of an im-
plicit solvent. Characteristic coordinates of the ALA-2 peptide include the dihedral
angles (φ, ψ), as shown in Figure 6.6(a). Distinct combinations of the dihedral an-
gles characterize three distinguishable (α, β-1, β-2) conformations, as provided in the
Ramachandran plot [501] in Figure 6.6(b) [500]. The peptide consisting of 22 atoms
can be described by 60 effective degrees of freedom (rigid body motion removed);
however, we store the complete Cartesian coordinate vector x with dim(x) = 66,
where six degrees of freedom are fixed. The exact representation of ALA-2 in x with
coordinate bookkeeping is given in the Appendix E.3.

Reference model setting

Applying the proposed methodology does not require the production of any refer-
ence atomistic trajectories. However, we are interested in comparing our obtained
predictions from the generative CG model to reference observables estimated by a
reference MD simulation. We refer to Appendix E.4 for all necessary details obtain-
ing the MD trajectory. Nevertheless, for the sake of evaluating forces, we need to
specify system properties such as the force field, which in this case is AMBER ff96
[337–339]. We employ an implicit water model based on the generalized Born ap-
proach [551, 552], which serves as a solvent. The temperature of interest is T =

330 K.
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Linear
layer

Input
dimension

Output di-
mension

Activation
layer

Activation
function

l(1)φ dim(x) = 66 d1 a(1) SeLu4

l(2)φ d1 d2 a(2) SeLu

l(3)φ d2 d3 a(3) Log Sigmoid 5

l(4)φ d3 dim(z) None -

l(5)φ d3 dim(z) None -

TABLE 6.3: Network specification of the encoding neural network
with d{1,2,3} = 170.

Linear
layer

Input
dimension

Output di-
mension

Activation
layer

Activation
function

l(1)θ dim(z) = 2 d3 ã(1) Tanh
l(2)θ d3 d2 ã(2) Tanh
l(3)θ d2 d1 ã(3) Tanh
l(4)θ d1 dim(x) None -

TABLE 6.4: Network specification of the decoding neural network
with d{1,2,3} = 120.

Model specification

The general model structure introduced earlier in Section 6.1.5 is also employed in
the context of the ALA-2 setting. We mostly rely on findings in [415], where an
identical system was explored on the basis of data-driven forward KL divergence
minimization. All required details for the model are specified in Tables 6.3 and 6.4
for the encoder (rφ(z|x)) and decoder (qθ(x|z)), respectively. Similar to the previous
example in Section 6.2.1, we employ a tempering scheme as introduced in Section
6.1.6 and specified in Algorithm 4 with initial β0 = 1× 10−14 · βK, while the target
temperature is defined by βK = 1

kBT and T = 330 K. The inverse temperature β0

occurs as a multiplicative factor, multiplying the potential energy U(x). For gra-
dient estimation, the interatomic force F(x) is multiplied by βk. In the variational
approach presented in this work, we evaluate the force field under samples from
qθ(x). However, when qθ(x) has not yet learned, samples x(i) will potentially yield
high-energy states associated with large forces. According to experimental results,
the magnitude of F(x) in early training stages reaches ±1× 10−18. Therefore, the
initial inverse temperature is chosen such that β0F(x) evaluated under qθ(x) yields
values of ±1× 101. This implies that the embedded physics, expressed by inter-
atomic forces F(x), are weak in the early training stages and are emphasized as the
learning process proceeds with increasing βk. For further details, refer to Appendix
E.6.

The stochastic optimization algorithm is ADAM [472] with α = 0.001, β1 =
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FIGURE 6.7: Samples from qθ(z) (blue, filled) are decoded with
qθ(x|z) and encoded with rφ(z|x) (orange, no facecolor). We consider
the means of aforementioned distributions for performing the decod-
ing and encoding processes. Re-encoding the decoded z(i) matches

its origin.

0.9, β2 = 0.999, εADAM = 1.0× 10−8. We employ J = 2000 samples for comput-
ing expectations with respect to qθ(x) throughout the training process. Initially, in
the early training stages, using fewer samples does not influence the training. The
number of samples should be increased once the model has been refined and comes
closer to ptarget(x).

Collective variables

When training the model with its encoder and decoder components rφ(z|x) and
qθ(x|z), it is important that these consistently map a generated sample z(i) ∼ q(z) to
x(i) through the decoder qθ(x|z), and from the decoded atomistic configuration x(i)

back to its origin, the value of the CV z(i) it has been generated from. The projection
from x(i) to the according CV is enabled through the encoder rφ(z|x). After some
initial iterations optimizing (φ, θ), the encoder and decoder work consistently as
depicted in Figure 6.7.

In Figure 6.8 we utilize the identified encoder rφ(z|x), which assigns CVs to an
input atomistic configuration, for encoding a reference test dataset. This dataset has
not been used for training and is used here solely for visualization purposes. The
test data (generated according to Appendix E.4) contains atomistic configurations
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FIGURE 6.8: Representation of z-coordinates of test data assigned by
the mean of rφ(z|z), which we learn by minimizing the reverse KL
divergence without reference data. Characteristic conformations of
ALA-2 are indicated in: α black, β-1 blue, and β-2 red color. Without
any prior physical information and in the complete absence of any
data, the encoder identifies physically relevant coordinates, which are

related to φ, ψ values.

from multiple characteristic modes based on their dihedral angle values (φ, ψ) as
shown in Figure 6.6(b). Given a datum from the test dataset x(i), we can assign the
corresponding value of its CV by employing the mean µφ(x(i)) of the approximate
posterior over the latent variables rφ(z|x). The assigned CV depicts the pre-image
of the atomistic configuration in the reduced CV space. It is important to note in
Figure 6.8 that atomistic configurations belonging to characteristic conformations
(α, β-1, β-2) are identified by rφ(z|x) and form clusters in the CV space. We note
that the conformations β-1, β-2 interleave with each other in regions around z1 =

0. An explanation for this overlap is the similarity of (φ, ψ) combinations in the
Ramachandran plot in Figure 6.6(b). Separate from the β configurations is the cluster
associated with α configurations in the CV space. The latter differ significantly with
respect to the (φ, ψ) pairs from the β conformations.

The implied similarity of, e.g., β conformations in the CV space is in accordance
with the expectations on dimensionality reduction methods. Similar atomistic—
or, in general, observed—coordinates should map to similar regions in their latent
lower-dimensional embedding, as emphasized in [516]. This is achieved in, e.g.,
multidimensional scaling [553] or isomap [518]. The presented dimensionality re-
duction relies solely on evaluating the force field F(x) at generated samples from
qθ(x), without using any data, and is differentiable with respect to x.

The hidden and lower-dimensional physically characteristic generative process
is emphasized further in Figure 6.9. We illustrate predicted atomistic configurations
x given the marked (circle) values of the CVs z. The change of characteristic (φ, ψ)
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FIGURE 6.9: Predicted configurations x (including dihedral angle val-
ues) with µθ(z) of pθ(x|z). As one moves along the z1 axis, we obtain
for the given CVs atomistic configurations x reflecting the conforma-
tions α, β-1, and β-2. All rendered atomistic representations in this

work were created by VMD [112].

dihedrals can be observed by moving from the red (β-2) to the blue region (β-1) in
the CV space and observing the configurational change in the predicted atomistic
configurations, given the indicated CVs. The depicted atomistic configurations are
obtained using the input CV z and the mean of qθ(x|z), which is expressed as a neu-
ral network with µθ(z). The probabilistic decoder qθ(x|z) is a distribution, implying
that given one value of the CV, several atomistic realizations can be produced. For
illustrative reasons we represent the mean µθ(z).

To obtain a better understanding of the meaning of identified CVs in terms of the
dihedral angles (φ, ψ), we visualize them by mapping given values of z to atomistic
configurations and compute the (φ, ψ) values assigned to the corresponding z, as
shown in Figure 6.10. Again, in the probabilistic model, we draw multiple atomistic
realizations x given one CG representation z. The realization for a given z fluctuates
in terms of bonded vibrations rather than any change in the dihedrals (φ, ψ). We
observe a strong correlation between (φ, ψ) and the CVs z.

In addition to the visual assessment given in Figure 6.9, we show quantitatively
that the structural properties of atomistic configurations generated through qθ(x)
truly capture those of a reference trajectory at T = 330 K, as shown in Figure 6.11.
Figure 6.11 provides histograms over bonding distances over all bonded atoms in
the system. Reference statistics of bond lengths are compared with those based on
generated samples of the predictive distribution qθ(x). Figure 6.12 provides esti-
mated observables based on the predictive model and a reference trajectory. The
observables are computed as explained in Appendix E.5.
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FIGURE 6.10: Predicted dihedrals (φ, ψ) for the latent CVs. The
depicted (φ, ψ) values were obtained from atomistic configurations

given a CV value z through the mean of qθ(x|z), µθ(z).
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FIGURE 6.11: Bonding distance statistics. In ALA-2, bonded atoms
of a reference simulation (blue) compared with histograms of the
bond lengths of the predicted atomistic ensemble based on qθ(x) (semi-
transparent in the foreground in orange). The titles of the subplots
indicate the relevant atom names, and the corresponding atom id of
the structure file of ALA-2 as provided in Appendix E.3 is shown in
brackets. The physics, in the form of bonding distances, is well main-
tained in the generated realizations. Predictive estimates are obtained
by employing J = 2000 samples of qθ(x), and the reference is based

on N = 4000 MD snapshots.
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FIGURE 6.12: Predicted observables compared with reference esti-
mates. Radius of gyration (left) and root-mean-squared deviation
(right). Predictive estimates are obtained by employing J = 2000
samples of qθ(x) and the reference by N = 4000 MD snapshots. Ob-

servables are estimated according to Appendix E.5.
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6.3 Summary and outlook

We have presented a variational approach for revealing CVs of atomistic systems
that additionally yield a predictive CG model. We circumvent the need for refer-
ence data, which is supposed to provide an approximation of the target distribution
ptarget(x). The simulation of complex biochemical systems and thus the obtained
data may suffer from bias owing to insufficiently exploring all relevant conforma-
tions. Conformations are separated by high free-energy barriers, which hamper
efficient exploration with brute-force MD [190]. The presented variational coarse-
graining and CV discovery approach is guided by evaluating interatomic forces un-
der the predictive distribution qθ(x), where sampling is computationally efficient.
By embedding the atomistic force components, qθ(x) learns from the target distribu-
tion ptarget(x). We derived an upper bound on the reverse KL divergence, in which
all terms are tractable, and discuss the physical underpinning of the components
involved. The derived upper bound is subject to minimization with respect to all
model parameters. We provide a variance-reducing gradient estimator based on
reparametrization. Whereas variational approaches are known for being mode fo-
cusing, remedy provides the introduced consistent tempering scheme, alleviating
the simultaneous learning of modes. We demonstrate the proposed algorithmic ad-
vances with a double well potential energy and the ALA-2 peptide. Characteristic
CVs have been identified by the introduced optimization objective.

The following steps will be pursued in continuation of this work. Atomistic
forces and thus gradients span many orders of magnitude at initial iterations. This
could lead to numerical instabilities. Thus, we are interested in synthesizing the
advantages of the forward and reverse KL divergences in the context of atomistic
systems. We propose an adaptive learning scheme that may rely in its early training
stages on a few data points. These are not required to reflect the whole phase space,
but it is important to have a basis for learning, e.g., the structure of the atomistic sys-
tem with its approximate bond lengths. This eases the problem of evaluating F(x)
for the un-physical realizations that may be predicted by qθ(x) in an early training
phase:

E = γDKL
(
qθ(x)‖ptarget(x)

)
+ (1− γ)DKL

(
ptarget(x)‖qθ(x)

)
. (6.39)

With γ ∈ [0, 1] weighting the overall contribution from the reverse and forward
KL divergences, we use an adaptive weight, γ(k), which implies dependence on
the current iteration k. With the proceeding learning process (increasing k), γ could
increase up to γ = 1, so that we fully rely on the variational approach and thus the
associated physics expressed by the potential U(x) and forces F(x). Minimizing the
above objective Equation 6.39 with respect to model distributions synthesizes the
findings of this work and those of [415].

We furthermore propose the employment of the obtained qθ(x) for predictive
purposes of systems at different temperatures. This can be achieved by obtaining the
implicitly learned predictive potential expressed in terms of fine-scale coordinates at
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βtarget based on qθ(x):

Upred
θ (x) = − 1

βtarget
log qθ(x) + const. (6.40)

Assuming we are interested in simulating the same system at βnew where βnew 6=
βtarget, we can readily provide a generalized predictive distribution for any βnew,

q̃θ(x) ∝ e−βnewUpred
θ (x), (6.41)

by employing the predictive potential Upred
θ (x) defined in Equation 6.40.

Finally, we emphasize the most relevant findings of this work. We have refor-
mulated the identification of CVs as an optimization problem, which additionally
provides a predictive CG model. CVs are revealed in the absence of any prior physi-
cal knowledge or insight, and thus in the absence of any system-dependent assump-
tions. Instead of relying on reference data, we employ the minimization of the re-
verse KL divergence and develop an inference scheme in the context of atomistic
systems. Thus, the optimization is solely guided by the evaluation of the potential
U(x) and/or forces F(x) at samples of the predictive distributions qθ(x). We have
also developed an adaptive tempering scheme based on findings of [205].
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Chapter 7

Discussion, conclusions, and
outlook

In the sequel we point out commonalities and differences among the publications
and chapters of this thesis. We focus on the methodological advancements and the
evoked advantages in the context of coarse-graining atomistic simulations. For sug-
gested future work with advances and extensions of the presented work, refer to the
outlook provided in each chapter or publication.

7.1 Discussion and conclusions

We have presented a novel coarse-graining approach with a focus on atomistic sys-
tems in equilibrium. Compared with most existing coarse-graining schemes, which
rely on a many-to-one mapping from fine-to-coarse, we have developed strategies
that follow the opposite path by proposing a probabilistic coarse-to-fine mapping.
The strategy developed in this work results in a directed probabilistic model, in
which coarse-grained variables serve as latent generators yielding fully atomistic co-
ordinates through a probabilistic coarse-to-fine mapping. The latent coarse-grained
variables thus depict a pre-image of the all-atom representation, where the essential
physical features are expressed by the lower-dimensional1 coarse-grained variables.
The proposed probabilistic graphical model readily enables the quantification of the
uncertainties that unavoidably occur during coarse-graining processes. We demon-
strate the origins of the proposed approach by drawing similarities with a related
coarse-graining framework that relies on the minimization of an information theo-
retic objective, the KL divergence from the target Boltzmann distribution to the dis-
tribution of the coarse-grained model. We generalize the relative entropy method
to produce a truly predictive framework and reformulate the minimization of the
KL divergence to a Bayesian likelihood-based approach. The Bayesian framework
enables the consistent incorporation of functional prior information. It provides
a predictive distribution that allows the probabilistic reconstruction of the micro-
scopic all-atom description and thus the estimation of macroscopic observables with
interdependencies in the fine-scale microscopic representation. Beyond obtaining

1Lower-dimensional in comparison with the observed atomistic coordinates.



128 Chapter 7. Discussion, conclusions, and outlook

point estimates of observables, the Bayesian framework enables a predictive poste-
rior distribution over any quantity of interest. Posterior distributions over model
parameters are propagated to a predictive posterior expressing the model’s confi-
dence. The model’s confidence is reflected by error bars or credible intervals around
the maximum a posteriori estimate of the corresponding observable. We show the
dependency of the obtained credible intervals on the availability of training data.

Model selection is critical in all machine learning methods in any context. Here,
we aim to provide a flexible model to capture all relevant features encompassed in
the training data. The downside of flexible models is the resulting large set of un-
known parameters, which leads to increased computational effort and susceptibility
to overfitting. The probabilistic graphical model we follow encompasses two main
components:

(i) a probabilistic coarse-to-fine mapping q(x|z);

(ii) the description of the latent coarse-grained variables q(z).

This provides additional freedom with regards to the model selection. In Chap-
ters 3 and 4, we follow the idea of having a simple but parametrized probabilistic
coarse-to-fine mapping while providing flexibility in the coarse-grained description
induced by a flexible coarse-grained interaction potential Uc(z). Pushing complex-
ity to the coarse-grained description enables us to reveal physically relevant features
in the coarse-grained potential Uc(z), such as the relevant interaction order of the
coarse-grained variables or the interaction length of coarse-grained variables rele-
vant to generating the reference atomistic data.

We explore two strategies for providing an expressive parametrization of the
coarse-grained interaction potential Uc(z):

(i) we provide initially a flexible Uc(z) expressed by a rich set of basis functions
and search for those features required for explaining atomistic reference data
and deactivate all others (see Chapter 3);

(ii) we initially define a simple coarse-grained interaction potential that sequen-
tially enriches complexity upon demand by adding optimal basis functions to
maximize the anticipated benefit (see Chapter 4).

We will explain the commonalities and differences of the two approaches for pro-
viding an expressive coarse-grained interaction potential.

The first approach involves providing a rich set of basis functions associated with
physically meaningful interactions, such as the interaction length, interaction or-
der between coarse-grained variables, or different wavelengths when considering a
basis of trigonometric functions. In the latter case, the wavelength relates to the fre-
quency of changes of the interaction potential in dependencies of pairwise distances.
Considering the combinatorial possibilities of the aforementioned basis functions,
we obtain a flexible and expressive functional form of Uc(z). The proposed Baye-
sian framework allows us to incorporate prior models that support the discovery
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of sparse solutions and thus to reveal dominant features associated with the basis
functions. Unnecessary features are automatically turned off if they are not relevant
for describing the atomistic data. For this purpose, we employ a hierarchical prior
along the lines of automatic relevance determination (ARD) [421]. This successfully
reveals physically relevant features associated with the most prominent interaction
lengths, interaction orders, or wavelengths when employing a set of trigonometric
basis functions. The algorithm is adaptive: as training proceeds and previously un-
required features become relevant to the learning process, these can be re-activated
again.

Starting with a simple coarse-grained interaction potential Uc(z) alleviates pa-
rameter training, especially in the early stages of the learning process, as only a few
model parameters need to be optimized. The model is refined sub-sequentially as
training proceeds and more expressive models are required. We demonstrate this
in Chapter 4 by developing an objective that expresses the anticipated gain mathe-
matically by adding a basis function from a parametrized family of features. This is
based on the squared value of the gradient of the lower bound with respect to the
parameter associated with the feature to be added. We postulate that the added ba-
sis function should be placed in regions where the coarse-grained distribution q(z)
differs most from the averaged and aggregated posterior distributions, which de-
pict the latent pre-image of the training data. The objective for identifying the most
promising basis function is expressed by maximizing the squared gradient of the
lower bound with respect to the parametrization of the feature functions. The pro-
posed algorithm thus searches the feature functions and employs the one that best
approaches the averaged and aggregated posterior distributions by the distribution
of the coarse-grained variables q(z) by enriching Uc(z). We suggest adding features
once the previous set of parameters has converged in terms of the lower bound on
the log-likelihood. We stop adding new features when the anticipated gain drops
below a certain level. In Chapter 4, we introduce a coarse-to-fine mapping that does
not require a priori physical insight, in contrast to the procedure in 3. However, both
methodologies are adaptive and reveal coarse-grained potentials Uc(z) with a phys-
ical underpinning, providing insight into the physics of the fine-scale simulation.

Chapters 3 and 4 develop efficient methods, combining advances in Markov
chain Monte Carlo (MC) methods [205, 554] and non-amortized variational infer-
ence [382]. The posterior distribution is obtained in both cases based on the Laplace
approximation centered at the MAP parameter estimate with a covariance relying
on the negative inverse of the Hessian matrix. We also provide a variational Baye-
sian posterior approximation of the parameters defining the coarse-to-fine mapping
in Chapter 4. The approximate posterior distributions obtained through the Laplace
and variational Bayes approximations reflect the uncertainties in the model param-
eters due to limited data. The associated implementations are embarrassingly paral-
lelizable with regards to the expectation step.

The publications discussed earlier and presented in Chapters 3 and 4 both rely
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on rather simple probabilistic coarse-to-fine mappings, balanced by incorporating
rich and adaptive descriptions of the coarse-grained potential. Pushing complexity
towards the coarse-grained interactions provides insight into the most prominent
interactions of the coarse-grained representation. Approaches for enhanced sam-
pling methods rely on slow coordinates of the system, called collective variables, to
efficiently guide the exploration of the fine-scale configurations and overcome high
free-energy barriers. This makes it necessary to identify collective variables that en-
code the most relevant motions in the all-atom description into a low-dimensional
description. The latter implies that the coarse-grained variables are distributed ac-
cording to a simple distribution, which should be compensated by a flexible map-
ping. Pushing flexibility towards the probabilistic coarse-to-fine mapping allows
us to learn complex mapping functions that lead to a simple distribution of coarse-
grained variables in the latent space associated with the most physically relevant
coordinates, given the low dimension of the latent collective variables. A flexible
coarse-to-fine mapping is presented in Chapter 5. We develop a methodology that
reformulates the identification of collective variables by Bayesian inference based on
unsupervised learning of a generative model. The focus is thus on the posterior dis-
tribution, which encodes observed atomistic configurations to latent collective vari-
ables. One can interpret the encoding component as a dictionary translating atom-
istic configurations to latent collective variables. Its counterpart represents a decoder
transforming the values of latent variables to fully atomistic representations. In con-
trast to previous work presented in Chapters 3 and 4, we address this using vari-
ational Bayesian autoencoders and amortized inference (the aforementioned chap-
ters relied on non-amortized inference). In the identification of collective variables,
amortized inference has the advantage that it can learn a function for assigning latent
collective variables to any input atomistic configuration. The black box variational
inference approach followed in Chapters 3 and 4 treats the mean and variance (as-
suming Gaussian approximate posteriors) as parameters and learns an associated
posterior distribution for every single datum x(i). Amortized inference, which we
employ in Chapters 5 and 6, learns functions that give rise to the mean and variance
(assuming Gaussian approximate posteriors), given any input atomistic configura-
tion x(i). These expressive functions have been modeled with deep neural networks.
As discussed earlier, overfitting can be a problem for flexible models. As in Chap-
ters 3 and 4, we provide an adaptive learning algorithm favoring sparse solutions of
the employed neural networks. Beyond obtaining sparse solutions, the ARD prior
enables robust machine learning of neural network parameters (dim(θ) ≈ 13 000)
with only, e.g., 52 data points from the target distribution when dim(x) = 60. The
latter approach identifies neural networks that cut 60% of the neurons. We have
tested the proposed approach with alanine dipeptide (ALA-2) and ALA-15, reveal-
ing collective variables based on a small dataset (N = 52) that are highly correlated
with the dihedral angles of the corresponding peptides. The dihedral angles are
known to be a physically parsimonious representation of the peptide. However, we
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reveal these collective variables in the absence of any physical insight or assump-
tions, instead reformulating the identification of collective variables as a Bayesian
inference problem. Beyond the identification of collective variables, the proposed
approach is predictive, as shown in Chapters 3 and 4. We provide an efficient means
for the quantification of parameter uncertainties in neural networks induced by lim-
ited amounts of training data. We provide an approximate posterior for the network
parameters, capturing the aforementioned uncertainty. The parameter uncertainties
of the neural networks are propagated, and we provide a predictive distribution
over the observables. MAP estimates are augmented by credible intervals.

All developments presented in Chapters 3, 4, and 5 rely on the minimization of
the KL divergence from the target Boltzmann density to the predictive distribution
of the coarse-grained model. This implies the use of data for MC approximations of
the involved expectations with respect to the target density. This raises the question
of whether one can assume a sufficient quantity of data representing the configu-
ration space in all biochemically relevant systems. Instead of simulating the target
Boltzmann density, e.g., with MC or molecular dynamics approaches for obtaining
reference data, we start at an earlier stage, proposing an approach that circumvents
the need to obtain reference data of complex atomistic systems (see Chapter 6). In-
stead of relying on the KL divergence from the target Boltzmann distribution to the
predictive coarse-grained model, we flip the order and pursue the minimization of
the reverse KL divergence from the predictive distribution of the coarse-grained mo-
del to the target. This actually implies that no expectations occur, with respect to the
target distribution, that depend on model parameters. This naturally leads to an ob-
jective that does not require any reference data. We develop an approach among the
lines of hierarchical variational inference [533], which provides a predictive coarse-
grained model and also yields collective variables based on the reverse KL diver-
gence. In this approach we employ, as discussed in Chapter 5, an encoding and de-
coding structure, where the only difference is the optimization objective. We discuss
commonalities and differences between the forward (data-driven) KL divergence
and the proposed reverse (variational) KL divergence objective. Direct optimization
of the reverse KL divergence is in general intractable. We present an approach for
obtaining a tractable upper bound on the reverse KL divergence based on [533] and
provide noise reducing estimators for learning the predictive coarse-grained model.
We obtain a variational amortized inference scheme, which, as in Chapter 5, enables
the assignment of collective variables for any atomistic input coordinate x. We also
show that the machine learning of the model fully embeds the available physics.
The derived gradient formulations involve interatomic forces assessed for samples
of the predictive coarse-grained distribution q(x). Furthermore, the objective bal-
ances maximizing the entropy of the predictive distribution q(x) and minimizing
the average potential energy of the target distribution Uf(x) assessed under q(x). Af-
ter developing the theoretical framework, we assess the methodology using a ‘toy’
double well example and, at the end of Chapter 6, the alanine dipeptide.
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The major development of this work is a predictive coarse-graining framework
that is predictive in terms of generating all-atom representations while consistently
accounting for uncertainties induced by limited training data. These uncertain-
ties are propagated to posterior predictive distributions expressed in credible inter-
vals around MAP estimates of observables. We develop adaptive models that pro-
vide sparse solutions associated with the coarse-grained interaction potential. These
methods follow different strategies for providing an expressive coarse-grained inter-
action potential by automatically deactivating unnecessary features (Chapter 3) or
by refining the model describing the coarse-grained potential (Chapter 4), thereby
revealing physically interpretable interaction features. Whereas Chapters 3 and 4
provide a flexible description of the coarse-grained potential, we present the op-
posite strategy in Chapters 5 and 6, with a simple description of the coarse-grained
variables and a flexible coarse-to-fine mapping. This approach seeks to identify slow
or collective variables of the system, which can be readily employed by enhanced
sampling methods as the employed mapping is differentiable with respect to x. We
explore data-driven methodologies relying on limited data in Chapters 3, 4, and 5
and develop a variational approach that is based solely on assessing the fine-scale
interaction potential and does not require any reference data. We use this approach
for learning a predictive coarse-grained model that also yields physically relevant
collective variables, as presented in Chapter 6.

7.2 Outlook

An outlook of the subsequent steps for building upon the presented methodologies
is provided at the end of each chapter or publication. The following describes some
potential future directions for incorporating the proposed approaches as building
blocks of enhanced sampling methods.

The potential acceleration of the exploration of the configuration space with en-
hanced sampling methods crucially depends on the identified collective variables. A
second important component for enhanced sampling methods is the identification
of schemes that utilize collective variables for the construction of biasing potentials
to lift deep free-energy wells.

The construction of a biasing potential to help escape sufficiently explored free-
energy basins often relies on many cross-validation steps to identify the optimal pa-
rameters [291, 511, 555]. We advocate employing the lower-dimensional pre-image
of the currently explored region of the potential energy surface. For this purpose,
we use the posterior (encoder) r(z|x(i), φ(x(i))) to construct a local biasing potential
around the currently explored configuration x(i). The biasing potential is construc-
ted as follows:

Ux(i)
bias(x) ∝ − log

∫
q(x|z, θ)r(z|x(i), φ) dz. (7.1)
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The simulation of the reference potential requires the gradient of U(x) with respect
to x, which represents the interatomic forces acting in the system. The proposed
expression in Equation 7.1 can be readily incorporated, and gradient computation
with respect to x is feasible when relying on backpropagation [548] in cases where
the distributions are based on neural networks. Adding biasing forces can direct and
accelerate the exploration of the configurational space.

Next, we propose an approach that combines active learning of a biasing poten-
tial with enhancing the exploration of the configurational space, and which is also
predictive of observable estimations. For this purpose, we introduce a distribution
encompassing the reference fine-scale interaction potential Uf(x) and a predictive
distribution, e.g., q(x) =

∫
q(x|z)q(z) dz:

pbias(x) =
1

Zp
e−βUf(x)−log q(x). (7.2)

The distribution pbias(x) becomes uniform when q(x) = ptarget(x). A potential op-
timization objective thus describes the minimization of the KL divergence from a
uniform distribution to pbias(x) with respect to q. Alternatively, one could employ
a sequence of objectives guided by an auxiliary distribution pn(x), which could be
close to a reference configuration xref defined by a Gaussian pn(x) = N (xref, σ2

n I):

min
q

DKL (pn(x)‖pbias(x)) . (7.3)

Initially, we propose starting with small values for σ2
n , which could be increased as

learning proceeds (see Appendix F). As described in Chapter 6, flipping the order
and employing the reverse version of Equation F.3 would circumvent the need to
simulate the biased fine-scale system.
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Appendix A

Methodology

A.1 Estimating credible intervals

The following provides an algorithm for estimating credible intervals. Bayesian in-
ference algorithms, as introduced in Section 2.5, yield approximations of the poste-
rior distributions p(θ|xDN ) (Equation 2.66). Given this posterior distribution we can
propagate uncertainties towards observables as specified in Algorithm 5.

Algorithm 5: Estimation of credible intervals

Input: Posterior distribution p(θ|xDN ), observable a(x).
Output: Credible interval.

1 for all i = 1, . . . , I do
Obtain a posterior sample:

2 θ(i) ∼ p(θ|xDN ) (Equation 2.66).
Calculate the predictive estimate â(θ(i)) shown in Equation 2.42:

3

â(θ(i)) =
(∫

a(x)p(x|z, θ
(i)
cf )p(z|θ(i)c ) dz dx

)
. (A.1)

We approximate involved integrals with Monte Carlo methods.

4 Compute desired intervals by employing the obtained samples â(θ(1...I)).

Please note that even in cases with symmetric posterior distributions over the model
parameters p(θ|xDN ) (Equation 2.66), the obtained credible intervals may not exhibit
symmetry around the observable associated with θMAP, â(θMAP).
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We propose a data-driven, coarse-graining formulation in the context of equilibrium 
statistical mechanics. In contrast to existing techniques which are based on a fine-to-
coarse map, we adopt the opposite strategy by prescribing a probabilistic coarse-to-fine map. 
This corresponds to a directed probabilistic model where the coarse variables play the 
role of latent generators of the fine scale (all-atom) data. From an information-theoretic 
perspective, the framework proposed provides an improvement upon the relative entropy 
method [1] and is capable of quantifying the uncertainty due to the information loss 
that unavoidably takes place during the coarse-graining process. Furthermore, it can be 
readily extended to a fully Bayesian model where various sources of uncertainties are 
reflected in the posterior of the model parameters. The latter can be used to produce 
not only point estimates of fine-scale reconstructions or macroscopic observables, but 
more importantly, predictive posterior distributions on these quantities. Predictive posterior 
distributions reflect the confidence of the model as a function of the amount of data 
and the level of coarse-graining. The issues of model complexity and model selection are 
seamlessly addressed by employing a hierarchical prior that favors the discovery of sparse 
solutions, revealing the most prominent features in the coarse-grained model. A flexible 
and parallelizable Monte Carlo – Expectation–Maximization (MC-EM) scheme is proposed 
for carrying out inference and learning tasks. A comparative assessment of the proposed 
methodology is presented for a lattice spin system and the SPC/E water model.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Molecular dynamics simulations [2] are nowadays commonplace in physics, chemistry, and engineering and represent one 
of the most reliable tools in the analysis of complex processes and the design of new materials [3–5]. Direct simulations are 
hampered by the gigantic number of degrees of freedom, complex, potentially long-range and high-order interactions, and 
as a result, are limited to small spatio-temporal scales with current and foreseeable computational resources.

An approach towards making complex simulations practicable over extended time and space scales is coarse-graining 
(CG) [6]. Coarse-graining methods attempt to summarize the atomistic detail in much fewer degrees of freedom which in 
turn lead to shorter simulation times, with potentially larger time-steps and enable the analysis of systems that occupy 
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larger spatial domains. Furthermore, from a reductionist’s point of view, they can provide insight into the fundamental 
components or processes associated with the macroscopic behavior and properties of molecular ensembles.

A systematic strategy towards coarse-graining is offered in the context of free-energy computation methods [7,8]. Nev-
ertheless, their primary goal is to escape deep, free-energy wells and are generally limited to a relatively small number 
of CG variables. A mathematically rigorous approach to coarse-graining lattice systems and a rich set of multi-level, adap-
tive algorithms for equilibrium and nonequilibrium settings, has been developed in [9–14]. Inversion-based methods such 
as the Direct or Iterative Boltzmann Inversion [15,16] and Inverse Monte Carlo [17], represent a popular strategy where 
the parameters of the CG model are adjusted to reproduce macroscopic observables [18]. Molecular Renormalization Group 
CG [19] is founded upon the ideas first presented in [20] and is based on matching correlators, obtained from atomistic and 
coarse-grained simulations, for observables that explicitly enter the coarse-grained Hamiltonian. Data-driven, variational CG 
methods such as Multiscale CG [21,22], Relative Entropy [1], Ultra GG [23], offer a rigorous way of learning CG models 
by approximating the Potential of Mean Force (PMF) [24] with respect to the CG variables on the basis of appropriate 
functionals.

It is obvious that unless there are known redundancies in the all-atom or fine-grained (FG) description, any coarse-
graining scheme will result in information loss [25,26]. A manifestation of this can be seen if one attempts to reconstruct 
the microscopic, FG configurations from the CG states [27,28]. Discrepancies will appear not only because the CG statistics 
are not captured correctly, but because the CG variables do not encode all the details needed to reproduce the FG picture. 
Despite this, predictions generated by existing CG schemes are always in the form of point estimates that do not reflect 
any of the predictive uncertainty which the aforementioned information loss induces. It is also reasonable to expect that 
this information loss increases the larger the difference between the dimension of fine and coarse descriptions becomes. 
Nevertheless given two competing CG descriptions of the same dimension, it is unlikely that both will capture the FG pic-
ture equally well. The discovery of a good set of CG variables (analogous to finding good reaction coordinates or collective 
variables in free energy computations [29]) is, on one hand, a function of the macroscopic quantities of interest but more 
importantly of the complex structure of inter-dependencies in the FG model.

The starting point of all CG schemes is the prescription of the coarse variables through a many-to-one, fine-to-coarse map. 
Such maps are dictated by the analysis objectives but also by physical insight on which FG features might be important [30]. 
For example several atoms/molecules can be lumped into a single, effective, pseudo-molecule with coordinates defined by 
considering the center of mass. A central component of the present work is the implicit definition of the CG variables 
through a coarse-to-fine map. This is achieved by a probabilistic generative model that treats the CG degrees of freedom as 
latent variables and explicitly quantifies the uncertainty in the reconstruction of the FG states from the CG description. The 
model is complemented with a distribution for the CG variables. Both densities are parametrized and the optimal values 
are determined on the basis of an information-theoretic objective (e.g. minimizing a Kullback–Leibler divergence as in [1]) 
which is shown to be a special case of a more general, Bayesian framework. The latter offers a critical advantage over 
existing techniques as it enables the prediction of macroscopic observables not only in the form of point estimates, but by 
providing whole distributions. These reflect the uncertainty due the aforementioned information loss as well as the fact that 
finite amounts of training data were used.

The emphasis on this amplified predictive ability of the proposed framework is the reason behind the title chosen for 
the present paper predictive coarse-graining (PCG). The Bayesian framework advocated offers a superior setting for model 
selection. We make use of hierarchical prior models that promote the discovery of a sparse set of features in the afore-
mentioned model components. This enables the search to be carried out over a very large set of feature functions for the 
CG potential which naturally amplifies the expressivity of the model [30]. We note that a Bayesian framework towards 
uncertainty quantification for force field parameters in molecular dynamics was introduced in [31,32]. Other Bayesian for-
mulations of coarse-graining problems using macroscopic observables were presented in [33,34] where also the issues of 
model calibration and validation were discussed.

The structure of the rest of the paper is as follows. Section 2 presents the basic model components, compares them 
with other CG schemes (primarily the relative entropy method), provides details on the exponential family of distributions 
employed for which uniqueness of solution can be proven and discusses in detail algorithmic and computational aspects. 
Numerical evidence of the capabilities of the proposed framework is provided in Section 3 where coarse-graining efforts for 
an Ising lattice system as well as for the SPC/E water model are documented. In all numerical examples, we report results 
on the predictive uncertainty as a function of the level of coarse graining, and the amount of data available. Finally, Section 4, 
summarizes the main contributions and discusses natural extensions of the proposed framework.

2. Methodology

This section introduces the notational conventions adopted and presents the proposed modeling and computational 
frameworks. We frequently draw comparisons with the relative entropy method introduced in [1] and further expanded 
and studied in [35,36] in order to shed light on the aspects related to information loss and to emphasize the need for 
quantifying the resulting uncertainty in the predictions.
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2.1. Equilibrium statistical mechanics

We consider molecular ensembles in equilibrium described by an nf-dimensional vector denoted by x ∈ Mf ⊂ Rnf . This 
generally consists of the coordinates of the atoms which follow the Boltzmann–Gibbs density1:

pf(x|β) = exp {−βU f(x)}
Z f(β)

, (1)

where U f(x) is the all-atom (fine-grained) potential, β = 1
kb T where kb is the Boltzmann constant and T is the temperature, 

and Z f(β) is the normalization constant (partition function) given by:

Z f(β) =
∫

Mf

exp{−βU f(x)}dx. (2)

In the following, we assume that the temperature T (or equivalently β) is constant as it is commonly done in coarse-
graining literature, even though it is generally of interest to derive coarse-grained descriptions that are suitable for all (or 
at least a wide range) of temperatures [30]. In this setting and in order to simplify the notation, we drop the temperature 
dependence.

If a(x) : Mf → R denotes an observable (e.g. magnetization in Ising models), then the corresponding macroscopic prop-
erties can be computed as an expectation with respect to pf(x) as follows:

Epf(x)[a(x)] =
∫

Mf

a(x)pf(x)dx. (3)

Such expectations are (approximately) computed using long and cumbersome simulations as explained in the introduction 
e.g. by a long MCMC run [37]. Our goal is two-fold. Firstly, to construct a coarse-grained description of the system that 
would be easier and faster to simulate, and secondly to use this in order to predict expectations of any observable as 
in Eq. (3). A distinguishing aspect of the proposed PCG framework is that we also compute quantitative metrics of the 
predictive uncertainty in those estimates. At a third level, one would also want the coarse-grained description to provide 
a decomposition of the original, all-atom ensemble into physically interpretable terms and interactions. We defer such a 
discussion on how the proposed model can achieve this goal for the conclusions.

We denote by X the coarse-grained variables and assume that they take values in Mc ⊂ Rnc . It is obviously desirable 
that nc � nf . Let also Uc(X) denote the potential associated with X and pc(X) the corresponding density:

pc(X) = exp {−βUc(X)}
Zc

, (4)

with the normalization constant,

Zc =
∫

Mc

exp{−βUc(X)}dX . (5)

In existing coarse-graining formulations, the coarse variables X are defined using a restriction, fine-to-coarse map 
R : Mf → Mc i.e. X = R(x). As this is generally a many-to-one map, it is not invertible [36]. If the observables of in-
terest actually depend on X i.e. if a(x) = A(R(x)) = A(X), then one can readily show that it suffices that pc(X) is equal to 
the marginal of X with respect to pf(x), or equivalently that Uc(X) = U opt

c (X) where:

U opt
c (X) = −β−1 log

∫
δ(X − R(x)) pf(x)dx. (6)

That is the coarse-scale potential Uc(x) coincides with the potential of mean-force of X . This is a consequence of the 
following equalities:

Epf [a] =
∫

Mf

a(x) pf(x) dx

=
∫

Mf

A(R(x)) pf(x) dx

1 In the following, we assume all probability measures are absolutely continuous with the Lebesgue measure and therefore work exclusively with the 
corresponding probability density functions.
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=
∫

Mf

⎛
⎜⎝∫

Mc

A(X)δ(X − R(x)) dX

⎞
⎟⎠ pf(x) dx

=
∫

Mc

A(X)

⎛
⎜⎝∫

Mf

δ(X − R(x)) pf(x) dx

⎞
⎟⎠dX

=
∫

Mc

A(X) pc(X) dX .

Nevertheless, even if one is able to compute or approximate sufficiently well U opt
c (X), there is no guarantee that expecta-

tions of other observables that do not solely depend on X can be accurately computed. Consistent reconstructions of the 
all-atom configurations x, given X samples from pc(X), can be obtained from the conditional:

pR(x|X) = δ(X − R(x))

ZR(X)
, (7)

i.e. the uniform density on the manifold in Mf implied by the map R,2 where:

ZR(X) =
∫

δ(X − R(x)) dx. (8)

Given a coarse-grained potential Uc (not necessarily the optimal as in Eq. (6)) and the density pc(X) in Eq. (4), the corre-
sponding reconstruction density of the all-atom description consistent with the map pR(x|X) (Eq. (7)) is given by:

pR(x) =
∫

pR(x|X) pc(X) dX

=
∫

δ(X − R(x))

ZR(X)
pc(X) dX

= pc(R(x))

ZR(R(x))
. (9)

We note that in the context of the relative entropy method [1], which like ours, is data-driven and has an information-
theoretic underpinning, the goal is to identify the Uc (within a certain class) that brings pR(x) (Eq. (9)) as close as possible 
to the reference, FG density pf(x) (Eq. (1)). For that purpose the Kullback–Leibler (KL) divergence [39] KL(pf(x)||pR(x)) is 
employed as the objective which, based on Eq. (9), is given by:

0 ≤ KL(pf(x)||pR(x)) = −
∫

pf(x) log
pR(x)

pf(x)
dx

= −Epf(x)[log pc(R(x)] + Epf(x)[log ZR(R(x))] − H(pf), (10)

where H(pf) is the entropy of pf(x), which is independent of Uc and can be ignored in the minimization. As it has been 
identified in several investigations [35,36,38], while the first term can be reduced by adjusting Uc (it can be shown that 
the minimum is attained when Uc(X) = U opt

c (X)), the second term is fixed once the restriction map R that defines the 
coarse-grained variables has been selected. It represents a constant penalty reflecting the information loss that takes place 
due to the coarse-grained (and generally lower-dimensional) description adopted. Our goal is to reduce this component of 
information loss.

2.2. Probabilistic generative model

We propose a probabilistic, generative model [40] in which the coarse description is treated as a latent (hidden) state. In 
particular, we define a joint density p̄(X, x) for X and x as follows:

p̄(X, x) = pcf(x|X) pc(X). (11)

This consists of two components i.e.:

(i) a density pc(X) describing the statistics of the coarse-grained description X ,
(ii) a probabilistic, coarse-to-fine mapping implied by the conditional density pcf(x|X).

2 In [38] this is further generalized by introducing an additional, weighting density.
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We discuss the form and parametrization of the aforementioned densities in the sequel. We emphasize at this stage the 
different definition of the coarse-grained variables as latent generators that give rise to the observables through the prob-
abilistic lifting operator implied by pcf [9], in contrast to the restriction operators employed in other schemes explained 
previously. Such mappings can take various forms (e.g. local or global, linear or nonlinear) and can be extended to many 
hierarchical levels, as it will be shown. Understanding the meaning of the latent variables can only be done through the 
prism of this generative mapping. According to this, each FG configuration x(i) is generated as follows:

• Draw a CG configuration X (i) from pc(X).
• Draw x(i) from pcf(x|X (i)).

As we will show, an advantage of the proposed framework is that it readily provides a (predictive) probability density 
for the observables of interest. The marginal density of the FG description x is given from Eq. (11) by integrating out X :

p̄f(x) =
∫

Mc

pcf(x|X) pc(X)dX . (12)

Suppose the aforementioned component densities are parametrized by θ = (θ c, θ cf) i.e. pc(X |θ c) and pcf(x|X, θ cf), and 
we attempt to minimize the KL-divergence between the reference density pf(x) and the marginal p̄f(x|θ) implied by the 
generative model proposed :

KL(pf(x)||p̄f(x|θ)) = −
∫

Mf

pf(x) log
p̄f(x|θ)

pf(x)
dx

= −
∫

pf(x) log p̄f(x|θ) dx +
∫

pf(x) log pf(x)dx. (13)

This is equivalent to maximizing
∫

pf(x) log p̄f(x|θ) dx which, given samples {x(i)}N
i=1 from pf(x), is approximated by the 

log-likelihood of p̄f(x|θ)3:

L(θ) =
N∑

i=1

log p̄f(x(i)|θ)

=
N∑

i=1

log

⎛
⎝∫

pcf(x(i)|X (i), θ cf) pc(X (i)|θ c)dX (i)

⎞
⎠ . (14)

We note in the expression above that we associate a latent, coarse configuration X (i) to each sample x(i) which is effectively 
its pre-image. More importantly, the objective in the aforementioned expression accounts for both the density of the coarse-
grained description as well as the reconstruction (lifting) of the all-atom configuration from the (latent) coarse-grained one. 
Maximizing L(θ) naturally leads to the Maximum Likelihood estimate θMLE.

Furthermore the interpretation of the objective as the log-likelihood makes the progression into Bayesian formulations 
much more straightforward. If for example we define a prior density p(θ) then maximizing:

arg max
θ

{L(θ) + log p(θ)} , (15)

is equivalent to obtaining a Maximum a Posteriori (MAP) estimate θMAP [41]. The next step from point estimates for the 
model parameters is of course obtaining the full posterior p(θ |x(1:N)) using Bayes formula as:

p(θ |x(1:N)) ∝ p(x(1:N)|θ) p(θ)

∝ eL(θ) p(θ)

∝
N∏

i=1

⎛
⎝∫

pcf(x(i)|X (i), θ cf) pc(X (i)|θ c)dX (i)

⎞
⎠ p(θ). (16)

The aforementioned relationship can be concretely represented in the form of a directed graphical model as depicted in 
Fig. 1.

We discuss a strategy for approximating this posterior in the next subsections. It is more important to emphasize at this 
stage that given this posterior, we can produce not just point estimates of the expectation of any observable a(x), but also 

3 This result can be obtained (up to 1/N) by substituting pf(x) in Eq. (13) by the empirical measure 1
N

∑N
i=1 δ(x − x(i)). The likelihood of N samples 

drawn from pf(x) is trivially ∏N
i=1 p̄f(x(i)|θ).
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Fig. 1. Probabilistic graphical model representation.

compute its predictive posterior. For that purpose we make use of the predictive posterior p(x|x(1:N)) of our model which 
is determined by marginalizing the latent variables X and the model parameters θ :

p(x|x(1:N)) =
∫

p(x, X, θ |x(1:N)) dXdθ

=
∫

p(x, X |θ, x(1:N)) p(θ |x(1:N)) dXdθ . (17)

By replacing the joint density with the proposed generative model in Eq. (11), the predictive posterior p(x|x(1:N)) becomes:

p(x|x(1:N)) =
∫

pcf(x|X, θ cf) pc(X |θ c) p(θ |x(1:N)) dXdθ . (18)

The latter can be used in place of the FG distribution pf(x) in Eq. (3), to obtain approximations to the expectation of any 
observable a(x) as follows:

Epf(x)[a(x)] ≈ Ep(x|x(1:N))[a(x)]
=

∫
a(x) p(x|x(1:N)) dx

=
∫

a(x)

(∫
pcf(x|X, θ cf) pc(X |θ c) p(θ |x(1:N)) dX dθ

)
dx

=
∫ (∫

a(x) pcf(x|X, θ cf) pc(X |θ c) dX dx

)
︸ ︷︷ ︸

â(θ)

p(θ |x(1:N)) dθ

=
∫

â(θ) p(θ |x(1:N)) dθ . (19)

The approximation in the first line reflects the quality of the model as well as the uncertainty arising from the finite data 
x(1:N) that were used to calibrate it. This derivation suggests that â(θ) represents the predictive estimate of the expectation 
of a(x) for a given value θ of the model’s parameters. Averaging over the posterior of the latter provides the expected 
(a posteriori) value of this quantity. More importantly though by propagating the (posterior) uncertainty of θ through â(θ), 
one can readily obtain the predictive distribution of the observable. In the numerical examples we frequently plot such 
posterior statistics, usually in the form of credible intervals (see also A.1). Point estimates can be easily recovered if the 
analyst wishes to do so by employing for example the MAP (or MLE) estimate θMAP in the aforementioned equation i.e. if 
p(θ |x(1:N)) ≡ δ(θ − θMAP).

2.3. Inference and learning (point estimates)

This section is concerned with the computational aspects of training the proposed model. We pay particular attention 
to distributions in the exponential family for which the concavity of the maximum-likelihood problem can be analytically 
shown. Furthermore, we discuss strategies for parallelizing these tasks and improving the computational efficiency. We 
finally discuss particular prior specifications that are suitable for sparse feature recovery and model selection.

We begin our discussion with a strategy for obtaining point estimates for the model parameters θ by maximizing the 
log-likelihood (or the log-posterior) as given in Eq. (14) (or Eq. (15)). The difficulty in the optimization problem stems 
from the intractability of the log-likelihood due to the integration with respect to the latent variables X (i) (except for 
trivial cases for pc, pcf). To address this we employ an Expectation–Maximization (EM) scheme [42,43] where MCMC is used 
to approximate the E-step (MCEM) [44] and stochastic approximations to handle the Monte Carlo noise in the gradient 
estimates of the M-Step [45,46]. The EM algorithm allows the maximization of the log-likelihood by circumventing the need 
for repeated evaluations of the aforementioned intractable integrals and normalization constants. To motivate the derivation, 
we note that for an arbitrary set of densities qi(X (i)) we can construct lower bounds, denoted by F (i)(qi(X (i)), θ), for each 
term in the sum that makes up the log-likelihood as follows:
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L(θ) =
N∑

i=1

log

⎛
⎝∫

pcf(x(i)|X (i), θ cf) pc(X (i)|θ c)dX (i)

⎞
⎠

=
N∑

i=1

log

⎛
⎝∫

pcf(x(i)|X (i), θ cf) pc(X (i)|θ c)

qi(X (i))
qi(X (i)) dX (i)

⎞
⎠

≥
N∑

i=1

⎛
⎝∫

qi(X (i)) log
pcf(x(i)|X (i), θ cf) pc(X (i)|θ c)

qi(X (i))
dX (i)

⎞
⎠

︸ ︷︷ ︸
:=F (i)(qi(X (i)), θ)

=
N∑

i=1

F (i)(qi(X (i)), θ)

= F(q(X), θ), (20)

where q(X) = ∏N
i=1 qi(X (i)), and the result in the third step is a consequence of Jensen’s inequality. We note that the 

optimal qopt
i (X (i)) for each of the aforementioned terms is:

qopt
i (X (i)) = qi(X (i)|x(i), θ) ∝ pcf(x(i)|X (i), θ cf) pc(X (i)|θ c), (21)

i.e. the conditional posterior of the latent variables X (i) given x(i) and θ . This is optimal in the sense that the inequality 
becomes an equality [41] i.e.:

F (i)(qopt
i (X (i)), θ) = log

(∫
pcf(x(i)|X (i), θ cf) pc(X (i)|θ c)dX (i)

)
. (22)

All other qi ’s lead to suboptimal schemes that fall under the category of Variational Bayesian Expectation–Maximization 
(VB-EM, [47]). More importantly, the aforementioned derivation suggests an iterative algorithm where one alternates (until 
convergence) between the following two steps, i.e. at each iteration t:

E-step: Given the current estimate of θ ≡ θ (t) , evaluate:

F(qopt, t(X), θ (t)) =
N∑

i=1

F (i)(qopt, t
i (X (i)), θ (t)), (23)

where qopt, t
i is given in Eq. (21) for θ ≡ θ (t) .

M-step: Given the current qopt, t
i (X (i)), find:

θ (t+1) = arg max
θ

N∑
i=1

F (i)(qopt, t
i (X (i)), θ (t))

= arg max
θ

N∑
i=1

(∫
qopt, t

i (X (i)) log
(

pcf(x(i)|X (i), θ
(t)
cf ) pc(X (i)|θ (t)

c )
)

dX (i)
)

. (24)

We discuss in detail each of the two steps.

• The E-step of the algorithm requires computing expectations with respect to the intractable distributions in Eq. (21). As 
it can be seen in Eq. (24) only the terms in F (i) that depends on θ needs to be computed which we approximate by a 
Monte Carlo estimator:∫

qopt, t
i (X (i)) log

(
pcf(x(i)|X (i), θ

(t)
cf ) pc(X (i)|θ (t)

c )
)

dX (i) ≈

≈ 1

mt

mt∑
j=1

(
log pcf(x(i)|X (i)

j , θ
(t)
cf ) pc(X (i)

j |θ (t)
c )

)
. (25)

The mt samples used at each iteration t are drawn using MCMC from qopt, t
i (X (i)). Compared to i.i.d. Monte Carlo 

samples, the use of MCMC introduces theoretical complications with regards to the stability and the error in the approx-
imation [48,49]. A recent treatment of the convergence conditions for such schemes is contained in [50]. The obvious 
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error source arises from the bias in the MCMC samples which are approximately distributed according to the target 
density. In addition the samples generated are correlated. Such errors can be subdued by increasing the sample size mt . 
Heuristically speaking, at the first few iterations t , even a crude estimate of the objective generally suffices to drive the 
parameter θ -updates toward the region of interest. As the EM iterations proceed, the number of samples should increase 
in order to zoom-in at the optimum and minimize the oscillatory behavior due to the noise in the estimates. Several 
strategies have been proposed to optimize mt or even devise an automatic schedule by making use of error estimates 
[51–54]. In this work, we used a constant sample size i.e. mt = m, ∀t that we report in the numerical examples. We 
found through several cross-validation runs that this had no noticeable effect to the optima identified. We note finally 
that other Monte Carlo schemes can be utilized. One would expect that Importance Sampling [55], where previously 
generated samples are re-weighted and re-used, could be quite effective particularly when θ (t) do not change much 
and the corresponding qopt, t

i are quite similar. A more potent alternative is offered by Sequential Monte Carlo schemes 
(SMC) [8,56] which combine the benefits of MCMC and Importance Sampling.

• The maximization of the lower bound with respect to θ is not analytically tractable even when a Monte Carlo approx-
imation of the objective, as discussed previously, is used. For that purpose, we make use of a gradient ascent scheme 
that employs the partial derivatives of F :

G(θ) = ∇θ F =
N∑

i=1

∇θF (i) (=
N∑

i=1

G(i)(θ))

=
N∑

i=1

∇θ

(∫
qopt, t

i (X (i)) log
(

pcf(x(i)|X (i), θ
(t)
cf ) pc(X (i)|θ (t)

c )
)

dX (i)
)

, (26)

where at each iteration t , each term G(i)(θ) is approximated by a Monte Carlo estimate (see discussion before) as:

G(i)(θ) = ∇θ

∫
qopt, t

i (X (i)) log
(

pcf(x(i)|X (i), θ
(t)
cf ) pc(X (i)|θ (t)

c )
)

dX (i)

≈ 1

mt

mt∑
j=1

∇θ log
(

pcf(x(i)|X (i)
j , θ

(t)
cf ) pc(X (i)

j |θ (t)
c )

)

= Ĝ(i)
t . (27)

The latter are used to update θ as follows4:

θ t+1 = θ t + ηt

N∑
i=1

Ĝ(i)
t . (28)

The step sizes ηt are defined in the context of the Robbins–Monro scheme [45] which is designed to handle the 
unavoidable Monte Carlo noise in the gradient estimates. They should satisfy the following conditions [57]:

∞∑
t=1

ηt = +∞, and
∞∑

t=1

η2
t < ∞. (29)

In this work, we employ [36]:

ηt = α

(A + t)ρ
, (30)

with ρ ∈ (0.5, 1]. The choice for the values α, ρ , and A is problem dependent and is explicitly given in Sections 3.1
and 3.2 for the Ising and water problems, respectively.

• We note finally that the gradient needed for the θ -updates, involves the sum of N independent terms, one for each 
datum (i.e. FG configuration) available. Apart from the obvious opportunity for parallelization that this offers, it also 
suggests that fine-scale data can be successively added. Hence the optimization can be initiated with a small number of 
data points N and the changes in the optimal θ identified can be monitored as more fine-scale data are generated/added 
to ensure that convergence is achieved with the smallest such effort. Another strategy for reducing the computational 
effort is to perform the E-step i.e. sample from qopt, t

i only for a subset of the data i = 1, . . . , N at a time. While this has 
the potential of reducing the overall number of MCMC steps needed, convergence is still guaranteed [43].

4 As discussed in the seminal work of Neal and Hinton [43], more than one updates of θ per EM iteration can be performed.
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2.4. Exponential family densities – uniqueness of solution

In order to provide some insight to the log-likelihood maximization, we consider the case of model densities belong 
to the exponential family [41,58]. As it will be shown in the numerical illustrations, this represents a very large set of 
flexible densities where by appropriate selection of the feature functions φ and ψ in the equations below one can capture 
interactions of various order (e.g. 2nd, 3rd) [36,38]. Such densities have the form:

pc(X |θ c) = exp{θT
cφ(X) − A(θ c)}, (31)

and:

pcf(x|X, θ cf) = exp{θT
cfψ(x, X) − B(X, θ cf)}, (32)

where A(θc) and B(X, θ cf) are the log-partition functions given by:

A(θ c) = log
∫

eθT
cφ(X)dX,

B(X, θ cf) = log
∫

eθT
cfψ(x,X)dx. (33)

One can readily show that:

∂ A(θ c)

∂θc,k
=< φk(X) >pc(X |θc),

∂2 A(θ c)

∂θc,k∂θc,l
= Covpc(X |θc)[φk(X),φl(X)], (34)

and:

∂ B(X, θ cf)

∂θcf,k
=< ψk(x, X) >pcf(x|X,θcf),

∂2 B(X, θ cf)

∂θcf,k∂θcf,l
= Covpcf(x|X,θcf)[ψk(x, X),ψl(x, X)], (35)

where < · >p denotes the expectation with respect to the density p and Covp[·, ·] the covariance of the arguments with 
respect to p. Hence, for pc and pcf as above, the gradient of the objective F in Eq. (24) is given by5:

∂F
∂θc,k

=
N∑

i=1

(
< φk(X (i)) >qi(X (i)) − < φk(X) >pc(X |θc)

)
,

and

∂F
∂θcf,k

=
N∑

i=1

(
< ψk(x(i), X (i)) >qi(X (i)) − < ψk(x, X (i)) >pcf(x|X (i),θcf)qi(X (i))

)
. (36)

Furthermore, the Hessian is:

∂2F
∂θc,kθc,l

= −N Covpc(X |θc)[φk(X),φl(X)],
∂2F

∂θc,kθcf,l
= 0,

∂2F
∂θcf,kθcf,l

= −
N∑

i=1

Covpcf(x|X (i),θcf)qi(X (i))[ψk(x, X),ψl(x, X)]. (37)

The block-diagonal Hessian is negative definite (at least when linearly independent feature functions are employed) 
which ensures that the objective is concave and has a unique maximum (whether arbitrary qi are employed or qopt

i as 
in Eq. (21)). We note also that Monte Carlo estimates of the Hessian can also be obtained and used in the θ -updates. These 
however tend to be more noisy than the gradients and special treatment is needed unless one is willing to generate large 
numbers of MCMC samples [36]. Finally, there is a wealth of stochastic approximation schemes that have been proposed 
and exhibit accelerated convergence [59–62].

5 We compare gradients of PCG with the relative entropy method in A.2.
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2.5. Prior specification

The incorporation of priors for θ does not pose any computational difficulties as their contribution is additive 
(see Eq. (15)) to the log-likelihood and its partial derivatives. While priors for θ cf, i.e. the parameters in the coarse-to-fine 
map, are unavoidably problem-dependent due to their special physical meaning, a more general strategy can be adopted for 
the θ c, i.e. the parameters associated with the density of the coarse-grained variables X . For exponential family distributions 
as in Eq. (31), each θc,k is associated with a feature function φk(X). As it will become apparent in the numerical examples, 
each of these feature functions encapsulates low- or high-order dependencies (or components thereof) between X . It is 
obviously impossible to know a priori which of the φ(X) are relevant for a particular problem and how these depend on 
the dimension of X or the coarse-to-fine probabilistic map pcf. This underpins an important model selection issue that has 
been of concern in several coarse-graining studies [30,33,34,38]. One strategy to address this is to initiate the search with a 
small number of features φ(X) and progressively add more. These can be selected from a pool of candidates by employing 
appropriate criteria. In [8,63] for example, the feature function that causes the largest (expected) decrease (or increase) in 
the KL-divergence (or the log-likelihood) that we seek to minimize (or maximize), is added at each step. In this work, we 
adopt a different approach whereby all available φ(X) contained in the vocabulary of feature functions, are simultaneously 
considered. Consequently this leads to a vector of unknowns θ c of very large dimension which not only impedes compu-
tations but can potentially lead to multiple local maxima, if the Hessian in Eq. (37) becomes semi-negative definite i.e. if 
linear dependencies between the selected φ(X) are present. More importantly though (at least when the number of data 
points N is small), it can obstruct the identification of the most salient features of the coarse-grained model which provide 
valuable physical insight [30].

To address this, we propose the use of sparsity-enforcing priors that are capable of identifying solutions in which only 
a (small) subset of θ c are non-zero and therefore only the corresponding φ(X) are active [64,65]. A lot of the prior models 
that have been proposed along these lines can be readily cast in the context of hierarchical Bayesian models where hyper-
parameters are introduced in the prior. In this work, we adopt the Automatic Relevance Determination (ARD, [66]) model 
which consists of the following:

p(θ c|τ ) ≡
∏

k

N (θc,k|0, τ−1
k ), τk ∼ Gamma(τk|a0,b0). (38)

This implies that each θc,k is modeled (a priori) with an independent, zero-mean, Gaussian, with a precision hyper-parameter 
τk which is in turn modeled (independently) with a (conjugate) Gamma density. We note that when τk → ∞, then θc,k → 0. 
The resulting prior for θc,k arising by marginalizing the hyper-parameter is a heavy-tailed, Student’s t-distribution. For the 
purposes of learning of θ c and in order to compute derivatives of the log-prior, we retain the τk ’s and treat them as latent 
variables in an inner-loop EM scheme [67] (see derivation in A.3) which consists of:

• E-step: evaluate:

〈τk〉p(τk|θc,k)
= a0 + 1

2

b0 + θ2
c,k
2

. (39)

• M-step: evaluate:

∂ log p(θ c)

∂θc,k
= −〈τk〉p(τk|θc,k)

θc,k. (40)

We note also that the second derivative of the log-prior with respect to θ c can be similarly obtained as:

∂2 log p(θ c)

∂θc,k∂θc,l
=

{ −〈τk〉p(τk|θc,k)
, if k = l

0, otherwise.
(41)

2.6. Approximate Bayesian inference – Laplace’s approximation

The discussion thus far has been limited to point estimates for θ . A fully Bayesian treatment would pose significant 
computational challenges. These stem from the intractability of the log-partition function A(θ c) of pc in the exponential 
family of models (see Eq. (31)). Sampling or approximating the full posterior of θ c would require repeated evaluations 
of this and potentially its derivatives, a difficulty which is only amplified when dim(θ c) � 1. For that reason, we adopt 
an approximation based on the Laplace’s method [68]. According to this, the target posterior p(θ |x(1:N)) is modeled with 
a Gaussian (Fig. 2) with mean equal to the MAP estimate θMAP and a covariance S equal to the inverse of the negative 
Hessian of the log-posterior at θMAP (see Eqs. (37) and (41)). These two quantities are readily obtained at the last iteration 
(upon convergence) of the MC-EM scheme described previously. Hence:
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Fig. 2. Schematic illustration of the Laplace’s approximation.

S−1 =
[

Scc 0
0 S f f

]
, (42)

where the block-matrices above are given by:

Scc = N Covpc(X |θc)[φ(X),φl(X)] + diag(〈τk〉p(τk|θc,k)
)

S f f =
N∑

i=1

Covpcf(x|X (i),θcf)qi(X (i))[ψ(x, X)]. (43)

Laplace’s approximation can also be interpreted as a second-order Taylor series expansion of the log-posterior at θMAP. Some 
remarks:

• For θc,k that are effectively turned off when using the ARD prior (i.e. θc,k,MAP = 0), 〈τk〉p(τk |θc,k)
→ ∞ and thus dominate 

the corresponding terms in S−1. As a result, the (approximate) posterior covariance of these θc,k approaches 0.
• We note that when the number of data points N → ∞, the corresponding terms in S−1 increase and as a result the 

(approximate) posterior covariance goes to 0, as one would expect.

Algorithm 1 summarizes the basic steps of the scheme advocated.

Algorithm 1 Proposed MC-EM scheme.

1: Initialize θ0 = {θ c
0, θ cf

0}.
2: Select parameters {a, ρ, A} for the Robbins–Monro optimization algorithm (Eq. (30)).
3: Step t = 0
4: while (not converged) do
5: MC-E-step:
6: for all i = 1, . . . , N do
7: Generate MCMC samples from the (conditional) posterior distribution qi(X (i)) in Eq. (21)
8: end for
9: M-step:

10: Construct Monte Carlo gradient estimators Ĝ(i) (Eq. (27)) augmented by the prior gradient (Eq. (40)).
11: Update the parameters θ based on Eq. (28))
12: t ← t + 1
13: end while
14: Compute Hessian of the log-posterior Eq. (15) at θMAP (Eqs. (37), (41)) to construct Laplace’s approximation of the posterior p(θ |x(1:N))

(Eq. (42)).

3. Numerical illustrations

We illustrate the proposed PCG framework in two examples. We particularize the definition of coarse-grained variables X
which unavoidably differs from problem to problem. We emphasize through several illustrations the ability of the proposed 
method to produce predictive estimates of various macroscopic observables as well as quantify the predictive uncertainty 
as a function of the amount of training data N used and the level of coarse-graining i.e. the ratio of the amount of fine to 
coarse variables. We also provide comparisons with the results obtained by employing the relative entropy method. Finally, 
we demonstrate how the ARD prior advocated can lead to the discovery of sparse solutions revealing the most prominent 
feature functions in the coarse potential and possibly the most significant types of interactions that this should contain. 
Whenever such a hierarchical prior (ARD) is employed (Eq. (38)) for the parameters θ c in the coarse potential, the following 
values were used for the hyperparameters: a0 = b0 = 10−5.
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3.1. Ising model

The Ising model serves as abstraction of various physical problems, e.g. for modeling electromagnetism or lattice gas 
systems [69,70]. It has been the subject of detailed studies and several strategies for coarse-graining in equilibrium [9,
11–13,35,36] and nonequilibrium [9] settings.

We consider a periodic, one-dimensional lattice consisting of nf = 64 sites. Each site i is associated with a binary vari-
able xi, i = 1, . . . , nf which takes values ±1. The nf-dimensional vector x = {xi}nf

i=1 follows pf(x) ∝ exp{−βU f(x)} with the 
fine-scale potential given by:

U f(x) = −1

2

Lf∑
k=1

Jk

⎛
⎝ ∑

|i− j|=k

xix j

⎞
⎠ − μ

nf∑
i=1

xi . (44)

The expression |i − j| = k implies a summation over all lattice sites i, j that are k-sites apart (periodic boundary conditions 
are assumed). The parameter Lf expresses the maximal interaction length. Following [9,28,71], we use a decaying interaction 
strength Jk with,

Jk = K

ka
, (45)

and the normalization,

K = J0

La−1
f

∑Lf
k=1 k−a

. (46)

Finally, the parameter μ denotes the external field.
The values A = 25, α = 0.15, and ρ = 0.75 were used for the Robbins–Monro updates (Eq. (28)) based on suggestions 

given in [36]. We used m = 170 samples for the MCMC estimates of the gradients in Eqs. (25) and (27).

3.1.1. Observables
As pointed out previously, the framework proposed readily allows for reconstructions of the whole fine-scale description 

and therefore probabilistic predictions can be computed for any observable. For comparative purposes, we focus on two such 
quantities. The first one is the magnetization m(μ) and its dependence on the external field parameter μ. This is associated 
with the following observable:

a(m)(x) = 1

nf

∑
i

xi, (47)

i.e. m(μ) = Epf(x)[a(m)(x)]. The second quantity is the correlation R(k) at various separation distances k which captures 
second-order statistical information of the fine-scale configurations. The corresponding observable is:

a(R)(x;k) = 1

nf

∑
|i− j|=k

xix j, (48)

i.e. R(k) = Epf(x)[aR(x; k)].
3.1.2. Coarse-variables X and coarse-to-fine map

While the framework proposed offers great flexibility in the definition of the coarse variables X , in this work we make 
perhaps the most intuitive choice by assuming that X are (also) binary and have a local dependence on x. This offers a 
direct appraisal on the level of coarse-graining as well as a natural, visual interpretation of the coarse variables and their 
role.

In particular, we assume that each coarse variable XI , I = 1, . . . , nc is associated with a one-dimensional lattice that 
is a coarser version of the fine-scale one, i.e. with nc < nf sites (Fig. 3). We can construct such descriptions by regularly 
coarsening by a factor of 2 such that nc = nf/2d , with d = 1, . . . , D . We assume that each XI (parent) is associated with 
S = nf

nc
fine-scale variables (children) denoted by x(I−1)S+s = xs,I (where s = 1, . . . , S , Fig. 3). We define a coarse-to-fine 

map of the form:

pcf(x|X, θ cf) =
nc∏

I=1

S∏
s=1

p(xs,I |XI , θ cf)

=
nc∏

I=1

S∏
s=1

p
1+xs,I XI

2
0 (1 − p0)

1−xs,I XI
2

= p
∑nc

I=1

∑S
s=1

1+xs,I XI
2

0 (1 − p0)
∑nc

I=1

∑S
s=1

1−xs,I XI
2 . (49)
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Fig. 3. Probabilistic coarse-to-fine map pcf(x|X, θ cf). The coarse-variable X1 is e.g. associated with x1...4,1 fine-scale variables through the probabilistic 
coarse-to-fine map pcf (Eq. (49)). Each xs,1 is conditionally independent from the other.

The expression above implies that each xs,I is conditionally independent and follows a Bernoulli distribution with probability 
p0 of being of the same value as its parent XI , and probability (1 − p0) of having the opposite spin. We emphasize that 
this does not imply that xs,I are also independent. In fact they will be correlated as a result of the dependencies between 
the coarse variables X induced by the coarse model pc which is discussed in the next subsection. The density pcf above 
belongs to the exponential family (Section 2.4) and is controlled by a single parameter, p0 ∈ [0, 1]. Given the symmetry of 
the model, we restrict p0 ∈ [0.5, 1]. To ensure that it stays within this interval during the MC-EM updates (Algorithm 1), we 
operate instead on θcf ∈ R defined as follows:

p0 = 1

2
(1 + 1

1 + e−θcf
). (50)

The derivatives needed for the updates of the EM-scheme in Eq. (27) and Eq. (37) are:

∂ log pcf

∂θcf
= ∂ log pcf

∂ p0

∂ p0

∂θcf
,

∂2 log pcf

∂θ2
cf

= ∂2 log pcf

∂ p2
0

(
∂ p0

∂θcf

)2

+ ∂ log pcf

∂ p0

∂2 p0

∂θ2
cf

, (51)

where:
∂ log pcf

∂ p0
= ψ(x, X)

p0
− 1 − ψ(x, X)

1 − p0
,

∂2 log pcf

∂ p2
0

= −ψ(x, X)

p2
0

− 1 − ψ(x, X)

(1 − p0)2
, (52)

and ψ(x, X) = ∑nc
I=1

∑S
s=1

1+xs,I X I
2 .

3.1.3. Coarse model
The coarse potential Uc(X; θ c) employed includes first-, second- and third-order interactions with various interaction 

lengths. In particular, we prescribe:

Uc(X; θ c) = − 1

2

{
θ

(1)
c

∑
i

Xi +
∑

i

Xi

L(2)
c∑
k

θ
(2)

c,k Xi±k +
∑

i

Xi

L(3)
c∑

k=1
l=1

θ
(3)

c,kl Xi±k Xi±k±l

}
− μ

∑
i

Xi . (53)

The parameters L(2)
c and L(3)

c denote the maximal second- and third- order interactions, respectively. With superscripts 
(1), (2), (3) we distinguish between the coarse potential parameters θ c that are associated with the first, two-body and 
third-body interactions, respectively. These parameters determine also the number of θ c which is equal to 1 + L(2)

c + (L(3)
c )2.

In order to compare the proposed method with the relative entropy method, as briefly summarized in Section 2.1, 
a deterministic fine-to-coarse mapping R(x) is needed. We note that in [35,36] such efforts have been made by “coarse-
graining” the interactions rather than the degrees of freedom i.e. x ≡ X . In order to truly assess the performance in cases 
where the coarse variables are of lower dimension and of the same type as in this study (i.e. binary), we prescribe the 
following map:

XI =
{

+1, 1
S

∑S
s xs,I ≥ 0

−1, 1
S

∑S
s xs,I < 0.

(54)

This implies a “majority rule” where the label of the parent XI is determined by the majority of the children. The same 
model as in Eq. (53) was used for the coarse potential. In order to reconstruct the fine configurations x and estimate the 
observables of interest from the coarse description X , a consistent sampling was performed from the conditional in Eq. (7)
for the R above.
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Fig. 4. For the FG datum x(i) (right), the image on the left shows a sample from the posterior of the CG X(i) (upon convergence of the Algorithm 1) i.e. one 
of the possible pre-images of x(i) . The three images in the center illustrate the predictions/reconstructions of the fine-scale: the top and bottom are samples 
drawn from the pcf and the center is the expected FG configuration according to pcf.

Fig. 5. Comparison of the reference magnetization (computed with the FG configuration) with posterior mean of predictive CG and relative entropy CG. 
N = 20, nf

nc
= 2, L(2)

c = 15, L(3)
c = 3.

3.1.4. Results
The ensuing results are based on the following values for the fine-scale potential: J0 = 1.5, a = 0.8, Lf = 8, β = 0.3, 

nf = 64. We generated data from the fine scale model for each of 41 values of the external field μ, equidistantly dis-
tributed within [−4, 4]. A different CG model is trained for every μ value considered. One could also envision introducing 
a dependence of the CG model’s components on μ which would allow a single model to be inferred and to be used for 
making predictions even for values of μ not contained in the data. Fig. 4 provides some insight on the role of the CG 
variables, their posterior and their ability to represent/reconstruct the FG configuration. Fig. 5 compares point-estimates 
of the predicted magnetization as obtained with the proposed method (red) and the relative entropy method (for fine-to-
coarse mapping as given in Eq. (54)). While one can claim that better results can be obtained with a different set of CG 
variables (Eq. (54)), the point in this comparison is to demonstrate the information loss that takes place which can lead 
to poor predictions when not quantified. Given the same amount of training data N , the information loss in the relative 
entropy method is driven by the not adjusted map in the consistent density of the fine-scale variables pR(x) denoted 
in Eq. (9) compared to PCG. While in PCG the probabilistic map pcf(x|X, θ cf) (Eq. (49)) is parametrized and optimized 
within the parametric family of pcf. We note further that the relative entropy method can lead to good approximations 
of the Potential of Mean Force, and as a result, accurate estimates (as shown earlier) of expectations of observables that 
depend solely on X . We could therefore select X in such a way that the magnetization is only a function of X in which 
case the result of the relative entropy method would probably be good. If however another expectation was sought (that 
does not depend on the current X ) a new set of X would need to be defined and a new CG model would need to be 
retrained.

When nf
nc

= 2, L(2)
c = 15, L(3)

c = 3, the total number of unknowns parameters θ c in the potential Uc is 1 + L(2)
c +

(L(3)
c )2 = 25. This is not a particularly large number, but we demonstrate nevertheless the effect of the sparsity enforc-

ing prior in Fig. 6 when N = 20 data points are used. In the absence of the ARD prior (Eq. (38)), all θ c are non-zero and 
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Fig. 6. Parametrization of two- and three-body interactions at μ = 0.0, obtained with and without ARD prior. A sparse solution is obtained with active ARD 
prior at the same predictive accuracy (see Fig. 7). N = 20, nf

nc
= 2, L(2)

c = 15, L(3)
c = 3.

Fig. 7. Comparison of predicted magnetization with and without ARD prior. N = 20, nf
nc

= 2, L(2)
c = 15, L(3)

c = 3.

the corresponding feature functions are all active (Eq. (53)). On the contrary, when the ARD prior is employed, the learn-
ing scheme identifies only 3 non-zero θ c. Interestingly these are associated with two-body interactions up to separation 3 
whereas all other terms corresponding to two- and three-body interactions are found to be unnecessary, despite having 
equal predictive accuracy as shown in Fig. 7 where point estimates of the magnetization are plotted (with and without the 
ARD prior).

Fig. 8 depicts the effect of adding more training data N in the predictive posterior estimates for the magnetization at 
various μ values. One observes that as N increases, not only the posterior mean estimates approach the reference solution, 
but more importantly, the posterior credible intervals shrink around it reflecting the fact that the model becomes more 
confident. Credible intervals are obtained by sampling the (approximate) posterior distribution p(θ |x(1:N)) (Eq. (16)) and de-
termining the observable for each sample θ (i) with the predictive estimator â(θ (i)) (Eq. (19)). We use the predictive samples 
â(θ (i)) to determine desired quantiles (see A.1 for more details). The same observations can be made when attempting to 
predict second-order statistics of the fine-scale i.e. the correlation at various separations k (Fig. 9).

The decreasing variance for increasing N can also be observed in the model parameters e.g. the coarse-to-fine mapping 
parameter p0 (Eq. (49)), the (approximate) posterior of which is shown in Fig. 10.

Finally in Figs. 11 and 12, the predictive ability of the model is compared for different levels of coarse-graining. In the 
formulation adopted, this is quantified by the ratio between the dimension of fine x and coarse X descriptions i.e. nf

nc
. We 

consider two cases i.e. nf
nc

= 2, 8. As one would expect, the posterior mean estimates are superior when nf
nc

= 2 but also the 
predictive posterior uncertainty increases as the coarse-graining becomes more pronounced. This is easily understood by 
the fact that the fewer CG variables used, the higher the information loss becomes. It is important to note though that even 
when nf

nc
= 8, the predictive posterior’s credible intervals always include the reference solution.
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Fig. 8. Comparison of the reference magnetization (computed with the FG configuration) with posterior mean and credible intervals corresponding to 1%
and 99% posterior quantiles. N = 20, nf

nc
= 2, L(2)

c = 15, L(3)
c = 3.

3.2. Coarse-graining SPC/E water

The second example addresses the coarse-graining of a water model which is described at the atomistic scale by oxygen 
and hydrogen atoms. Water has been the focus of several studies in coarse-graining as it plays the role of the solvent in 
various biological and chemical systems and as a result it can take up to 80% of the total simulation time [30]. Furthermore 
there exist several well-documented properties which can serve as a measure of comparison. In this study, we employ the 
Simple Point Charge/Extended (SPC/E) water model introduced in [72,73] for the FG (all-atom) description. In the context 
of the relative entropy method, coarse-graining of the SPC/E water is addressed in [36,74–76]. In particular, we consider 
a system of M = 100 water molecules at a temperature of T = 300 K, and a pressure of p = 1.0 bar. The equilibrium box 
length is lbox = 14.56 Å and a time step of �t = 2.0 fs is used. Periodic boundary conditions are applied in every dimension 
while ensuring the NVT ensemble by the Nosé–Hoover thermostat [77,78]. The x vector contains the coordinates of the 
100 oxygen and 200 hydrogen atoms i.e. dim(x) = 900. The fine-scale potential U f(x) under the SPC/E model consists of a 
Lennard–Jones (LJ) potential for non-bonded interactions and a Coulomb potential for long-range interactions. Parameters 
for the LJ potential,

U LJ
f (x) = 1

2

∑
j �=k

4ε

((
σ

Rij(x)

)12

−
(

σ

Rij(x)

)6
)

, (55)

are σ = 3.166 Å and ε = 0.650 kJ
mol , with the distance between particle i and j denoted as Rij .

The electric load of Hydrogen (H) and Oxygen (O) atoms are given by qO = −0.8476 e, qH = +0.4238 e where e repre-
sents the elementary charge. The SPC/E model assumes the bonded interaction to be rigid with a bonding angle defined 
between the two H-atoms and the central O-atom as ωHOH = 109.47◦ . The bond-length used in this study is lOH = 1.0 Å. The 
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Fig. 9. Comparison of the reference correlation (computed with the FG configuration) with posterior mean and credible intervals corresponding to 1% and 
99% posterior quantiles. N = 20, nf

nc
= 2, L(2)

c = 15, L(3)
c = 3.

Fig. 10. Posterior p(p0|x(1:N)) at μ = 0.0 for N = 10,20,50. nf
nc

= 2, L(2)
c = 15, L(3)

c = 3.

equilibration for the NVT ensemble was performed as in [36,75]. For both fine- and coarse-scale simulations the molecular 
dynamics software package LAMMPS [79] was used. Further details are contained in B.1.

The values A = 9, α = 0.05, and ρ = 0.60 were used for the Robbins–Monro updates (Eq. (28)) based on suggestions 
given in [36]. We used m = 160 samples for the MCMC estimates of the gradients in Eqs. (25) and (27).

3.2.1. Observables
The first macroscopic observable of interest is the Radial Distribution Function (RDF) g(r) which represents a charac-

teristic and well-studied property in water models. Several computational and experimental results related to the RDF are 
described in [80]. As a pair correlation function, g(r) depends on the statistics of the distances r jk between each pair of 
molecules j, k. To compute these distances, we employ the coordinates of the center of mass of each water molecule x̂ j :
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Fig. 11. Magnetization for different level of coarse graining, i.e. ratio of the amount fine/coarse variables nf
nc

= 2 (L(2)
c = 15, L(3)

c = 3) and nf
nc

= 8 (L(2)
c = 3, 

L(3)
c = 1). Both models were trained with the same data N = 20.

Fig. 12. Correlation for different level of coarse graining, i.e. ratio of the amount fine/coarse variables nf
nc

= 2 (L(2)
c = 15, L(3)

c = 3) and nf
nc

= 8 (L(2)
c = 3, 

L(3)
c = 1). Both models were trained with the same data N = 20.

x̂ j = xO, jmO + xH, j1mH + xH, j2mH

mO + 2mH
, (56)

where xO, j are the coordinates of the oxygen atom of molecule j, xH, j1 , xH, j2 are the coordinates of the two hydrogen atoms 
of the same molecule, and mO, mH are the masses of oxygen and hydrogen atoms, respectively (see B.1). If r jk = |x̂ j − x̂k|, 
then the corresponding observable of interest is [81]:

aRDF(x) = V

M2

M∑
j

M∑
j �=k

δ(r − r jk), (57)

where V denotes the volume of the simulation box (14.563 Å
3

) and M = 100 the number of molecules in the system. 
Additional details can be found in B.2.

The second property of interest involves the tetrahedral structure of water. Neighboring water molecules temporarily 
build such tetrahedral clusters due to the hydrogen bonds. Several measures of tetrahedrality have been proposed which 
relate to the deviation from the perfect tetrahedral structure ω0 = 109.471◦ [74,82]. In this work, we employ the angular 
distribution function which considers the eight closest neighbors nc = 8 for a given molecule j. It is defined as follows:

atetra(x;ω) = 1

Mnω

M∑
j=1

nc∑
k=1

nc−1∑
l �= j

δ(ω − ω jkl), (58)
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Fig. 13. Probabilistic mapping pcf(x̂ j |X j , θ cf), with mean X j and predicted fine-scale variable x̂i . The contours depict the isotropic Gaussian distribution of 
Eq. (59) with mean X j and variance σ 2.

with ω jkl the angle between molecules j, k, l, with the central molecule j (as computed using the centers of mass x̂ in 

Eq. (56)) and nω =
(

nc

3

)
= 56. The product (Mnω) normalizes atetra with respect to the considered angular triplets.

We note that since the observables of interest depend only on the centers of mass x̂ = x̂(x), it suffices to use a coarse-
to-fine map that relates the coarse variables X directly with x̂ (Eq. (19)).

3.2.2. Coarse-variables X and coarse-to-fine map
Since the observables of interest depend on the centers of mass x̂ (Eq. (56)), the coarse-to-fine probabilistic map assumes 

the form pcf(x̂|X). As frequently done in CG studies of water, each molecule j is represented by a CG variable X j ∈ R3. We 
then prescribe a pcf of the following form:

pcf(x̂|X, θ cf) =
M∏

j=1

N (x̂ j|X j, σ 2 I), (59)

where I is the 3 × 3 identity matrix. This suggests that each X j, j = 1, . . . , M determines the center of mass x̂ j up to an 
isotropic Gaussian with mean X j and variance σ 2 (see Fig. 13). The latter quantifies the uncertainty in the prediction of 
the fine-scale (up to centers of mass) from the CG description. Large values of σ 2 imply that X provides an imprecise 
reconstruction of x̂ and vice versa. Hence there is only one parameter in the coarse-to-fine map i.e. σ 2 ≥ 0. In order to 
ensure non-negativity during updates we operate instead on θ cf = − logσ 2 which leads to the following derivatives needed 
in Eqs. (27) and (37):

∂ log pcf

∂θcf
= 3M

2
− 1

2σ 2

M∑
j=1

|x̂ j − X j|2,

∂2 log pcf

∂θ2
cf

= − 1

2σ 2

M∑
j=1

|x̂ j − X j|2. (60)

Naturally, more complex descriptions involving an anisotropic covariance or a mixture of Gaussians could be used.

3.2.3. Coarse model
The coarse potential Uc(X; θ c) employed consists of two- and three-body interactions. It assumes the form:

Uc(X; θ c) = U SW(X)︸ ︷︷ ︸
fixed

+Ũ (X; θ c), (61)

where U SW(X) is a fixed term described below and Ũ (X; θ c) represents the “correction” that is learned from the data 
using the framework advocated. In particular, the fixed term U SW(X) is given by (a variation of) the Stillinger–Weber (SW) 
potential proposed in [83] and discussed in B.3. The remaining part Ũ (X; θ c) consists only of two-body interaction terms 
i.e.

Ũ (X; θ c) = 1

2

∑
j �=k

u(2)(R jk; θ c), (62)

where R jk = |X j − Xk| and the pairwise potential u(2)(R; θ c) is parametrized as follows:

u(2)(R; θ c) = uLJ(R; θLJ
c ) +

K∑
k=1

θ cor
c,k φk(R), R > 0. (63)
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Fig. 14. Coarse-graining SPC/E water using N = 20 training data. Computed two-body, coarse-scale potential u(2)(R; θ c) and comparisons.

In the equation above, uLJ(R; θ LJ
c ) is a Lennard–Jones potential and the feature functions φ = {φk(R)}K

k=1 are a combination 
of sines and cosines truncated in the interval Ic = [Rmin = 2.0 Å, Rmax = 6.0 Å]. The bounds Rmin, Rmax define an effective 
window where the LJ potential is corrected to capture the associated CG interactions. In particular:

φk(R) =
{

1Ic (R) sin 2πνk R, k = odd,

1Ic (R) cos 2πνk R, k = even,
(64)

where 1Ic (R) is the indicator function of the interval Ic. The wave-numbers νk offer a Fourier-like decomposition of the 
second-order potential and were defined as follows:

ν2k′ = ν2k′+1 = 1 + 19

K/2
k′, k′ = 0,2, . . . , K/2 − 1, (65)

i.e. at a uniform grid in [1, 20]. By increasing the total number K of these terms, one can potentially learn finer fluctuations 
of this potential. Naturally one would want to use as many feature functions as possible in order to ensure greater flexibility 
of the model, which gives rise to the need for sparsity-enforcing priors for θ cor

c,k as discussed previously. In this study, 
K = 100 was used.

The superimposed LJ potential ensures that limR→0 u(2)(R; θ c) = ∞ and is of the form:

uLJ(R; θLJ
c ) = 4ε

((σLJ

R

)12 −
(σLJ

R

)6
)

, (66)

where θLJ
c = (σLJ, ε). The total number of parameters associated with the two-body term was K + 2 = 102 and consists of 

θ c = (θ
LJ
c , θ cor

c ). The ARD prior is employed only for θ cor
c and an (improper) uniform prior is employed for the rest θ LJ

c . We 
note that due to the LJ part, the corresponding distribution pc is not in the exponential family anymore (Section 2.4) and 
the possibility of multiple local maxima cannot be excluded.

3.2.4. Results
We first run the proposed algorithm for N = 20 fine-scale (all-atom) realizations. Fig. 14a depicts the evolution of the 

inferred coarse-scale potential u(2)(R; θ c) (Eq. (63)) at various iterations of the EM-scheme. We initialize with θ cor
c = 0 and 

θ
LJ
c = (ε = 0.15 kcal

mol , σLJ = 3.5 Å). After 194 iterations, the converged result u(2)(R; θ c,MAP) is depicted with a solid black line. 
In Fig. 14b, we compare this converged result (red) with the two-body potential computed in [81] (dashed blue) using the 
relative entropy method and the LJ part (black) of the fine-scale SPC/E model. The former two exhibit similarities but also 
differences which stem from the different structure of these two models. These differences persist even if more training 
data N are used.

Fig. 15 depicts the effect of the ARD prior on θ cor
c . One observes in Fig. 15a that if no such prior is used (instead a 

uniform was employed) almost all θ cor
c are non-zero and as a result almost all the corresponding feature functions φk(R)

in Eq. (63) are active and the model is unable to distinguish their relative importance (unless N becomes very large). In 
contrast, the inclusion of the ARD prior in Fig. 15b leads to a sparse solution in which most φk(R) are deactivated (roughly 
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Fig. 15. θcor
c,MAP without and with the ARD prior with respect to the wavenumber νk (Eq. (64)). Superscripts sin (red) and cos (blue) indicate whether the 

corresponding θcor
c,k (Eq. (63)) is associated with a sine or cosine feature function respectively.

Fig. 16. Posterior of θ
LJ
c = (σLJ, ε) in Eq. (66) and σ 2 in Eq. (59) for N = 20.

80 out of 100 in this case). It can be clearly seen as well that feature functions (sines/cosines) with high wave-numbers 
(small wave-lengths) are largely unnecessary for the description of the coarse potential. Although not demonstrated in this 
run, we envision that this modeling feature will eventually allow us to identify not only the most important terms in each 
potential term but also the most suitable order of interactions in the coarse potential. Fig. 16 depicts the (approximate) 
posterior obtained for θLJ

c = (σLJ, ε) (Eq. (66)) and σ 2 (Eq. (59)) for N = 20.
Fig. 17 provides information with regards to the (approximate) posterior of θ c, computed using the Laplace’s ap-

proximation proposed, as reflected in the u(2)(R; θ c). In particular in Fig. 17a, we plot sample realizations of u(2)(R; θ c)

corresponding to different samples of θ c from the (approximate) Gaussian posterior (Section 2.6). We note that all realiza-
tions suggest the same location for the minimum of the potential. Variability is observed in the depth of this well as well 
as in its shape to the right of the minimum. Fig. 17b depicts the posterior mean of u(2)(R; θ c) as well as credible intervals 
at 10% and 90% posterior quantiles which reflect the inferential uncertainties discussed.

We finally report results illustrating the predictive capability of the model in terms of the macroscopic observables of 
interest i.e. the RDF and the angular distribution function discussed previously. To that end, we consider three data settings 
with N = 10, 20 and 100 fine-scale (all-atom) training data. While the MAP estimates do not exhibit prominent differences, 
the advantage of the method proposed is the predictive posterior that is furnished (Eq. (19)) and quantifies the uncertainty 
in the predictions that the coarse-grained model produces. Figs. 18 and 19 depict the posterior means and credible intervals 
corresponding to 10% and 90% posterior quantiles for the RDF g(r) (i.e. the expected value of the observable in Eq. (57)) and 
the angular distribution function p(ω) (i.e. the expected value of the observable in Eq. (58)). In all cases, the posterior means 
are very close to the reference values obtained by simulating the all-atom SPC/E model. It is interesting to point out that 
when only N = 10 data were used, the posterior mean overestimates the first peak in the RDF (Fig. 18a). Nevertheless the 
true solution is contained within the credible intervals computed. As one would expect, the breath of the credible intervals 
decreases as more training data N is introduced, reflecting the reduction in the predictive uncertainty of the model. Details 
for the computation of these credible intervals can be found in A.1.
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Fig. 17. Posterior of u(2)(R; θ c) for N = 20.

Fig. 18. Comparison of the reference RDF g(r) (computed with all-atom simulations using the SPC/E model) with posterior mean and credible intervals 
corresponding to 10% and 90% posterior quantiles.

4. Conclusions

We presented a novel, data-driven coarse-graining scheme of atomistic ensembles in equilibrium. In contrast to existing 
techniques which are based on a restriction, fine-to-coarse map, we adopt the opposite strategy by prescribing a probabilistic 
coarse-to-fine map. This corresponds to a directed probabilistic model where the coarse variables play the role of latent 
generators of the fine scale (all-atom) data. Such a model can readily quantify the uncertainty due to the information loss 
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Fig. 19. Comparison of the reference ADF p(ω) (computed with all-atom simulations using the SPC/E model) with posterior mean and credible intervals 
corresponding to 10% and 90% posterior quantiles.

that unavoidably occurs during the CG process. We showed that from an information-theoretic perspective, the framework 
proposed broadens the relative entropy method. Furthermore, it can be readily extended to a fully Bayesian model where 
various sources of uncertainties are reflected in the posterior of the model parameters. The latter can be used to produce 
not only point estimates of fine-scale reconstructions or macroscopic observables, but more importantly, predictive posterior 
distributions on these quantities. We show how these can quantify the confidence of the model as a function of the amount 
of data and the level of coarse-graining, i.e. the contrast in the dimension between fine and coarse descriptions.

A critical issue in all CG methods pertains to the form of the coarse model or coarse potential. On one hand, it is 
desirable to introduce not only as many feature functions as possible but also to capture interactions of the highest-order 
possible. On the other hand, such an intricate representation leads to a large number of unknown parameters, augmented 
computational cost and an increased possibility of overfitting. Such challenges can be readily addressed within the Bayesian 
framework adopted by the incorporation of appropriate prior models that promote the discovery of sparse solutions and 
are capable of revealing the most dominant features in the coarse potential. We demonstrated how such a hierarchical prior 
model, namely the ARD, is capable of distinguishing the most prominent feature functions.

The computational engine of the proposed framework is based on an MC-EM scheme that alternates between expec-
tations with respect to the posterior of the latent variables and maximization with respect to the model parameters. This 
leads to MAP estimates of the model parameters which serve as the basis for the Laplace’s model that approximates their 
posterior. We note that this represents a very basic approximation that we intend to extend by exploiting advanced MCMC 
schemes [84] and/or variational inference schemes [85]. From a practical point of view, we note that the algorithm proposed 
is embarrassingly parallelizable with regards to the expectation step (which is also the most expensive) and incremental 
variants can be readily adopted leading to improvements in computational efficiency.

The generative definition of the CG variables through a probabilistic coarse-to-fine map allows for great flexibility in the 
type and number of CG variables used. For example in [23], the FG configuration space is partitioned and within each of 
these subdomains a different set of CG variables and CG models is learned. This is a reasonable strategy not only because a 
globally-good set of CG variables is difficult to find, but also because the local CG variables can be lower-dimensional as they 
need only to work on a limited subdomain. In the context of the directed, probabilistic model advocated, the same effect 
can be readily achieved by using a mixture model [86]. Consider for example augmenting the set of (latent) CG variables 
with a discrete-valued variable, S which can take values between 1 and L (which is the number of partitions). The (latent) 
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variable S characterizes a finite number of discrete states of the system. Depending on the value S takes, the number and 
type of CG variables X can change by affecting the two distributions making up the mode, i.e:

pc(X, S = s|θ c) = pc(X |θ s
c)pc(S = s), (67)

where each pc(X |θ s
c) can be of the same or different form (e.g. exponential family) but with different parametrizations 

θ s
c, s = 1, . . . L. Similarly for the coarse-to-fine map, we can define:

pcf(x|X, S = s, θ cf) = pcf(x|X, θ s
cf), (68)

where again the parametrization can depend or not on S , θ s
cf, s = 1, . . . L. Infinite mixture models [87–89] based on Dirichlet 

process priors could provide a rigorous strategy on determining the number L of such hidden states needed to describe the 
atomistic ensemble. We note finally that, in nonequilibrium settings, by appropriate modeling of the time dependence of S
one would recover Hidden Markov Models (HMM, [46]) which have been employed in coarse-graining frameworks [90,91].

Another potentially powerful extension, involves the use of deep, hierarchical models. Deep learning tools have rev-
olutionized various machine learning tasks [92] by stacking multiple layers of simple representations. In the context of 
coarse-graining, such a scheme could be materialized by augmenting the set of CG variables as X 1, X2, . . . X L and the CG 
model as:

pc(X1, X2, . . . X L) = pc,1(X1|X2, θ
1
c ) . . . pc,L−1(X L−1|X L, θ

L−1
c )pc,L(X L |θ L

c ). (69)

If dim(X1) > dim(X2) > . . . > dim(X L), then such a structure could provide a hierarchical decomposition of the CG picture, 
starting from a highly coarse description and gradually reaching the more detailed abstraction X 1. The coarse-to-fine map 
could be controlled by X1 as pcf(x|X1, θ c).
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Appendix A. Methodology

A.1. Estimating credible intervals

This note summarizes necessary steps for estimating credible intervals. The Bayesian inference algorithms described in 
Sections 2.3 and 2.6, lead to (Gaussian) approximations of the posterior p(θ |x(1:N)) (Eq. (16)). The credible intervals shown in 
Figs. 11, 12, 18, and 19 are constructed from Monte Carlo samples â(θ (i)) of the observables of interest. These are generated 
on the basis of Eq. (19) as follows:

Algorithm 2 Estimating credible intervals.
1: for all i = 1, . . . , I do
2: Obtain a posterior sample: θ (i) ∼ p(θ |x(1:N)) (Eq. (16)).
3: Calculate the predictive estimate â(θ (i)) shown in Eq. (19):

â(θ (i)) =
∫

a(x) pcf(x|X, θ
(i)
cf ) pc(X |θ (i)

c ) dX dx. (A.1)

The integrations involved are performed with Monte Carlo sampling. We note that this requires simulating only the CG model as 
the mapping implied by pcf is straightforward.

4: end for
5: Compute desired quantiles with the given samples â(θ (1...I)).

We note that the estimated quantiles of the corresponding predictive posterior are not necessarily symmetric around its 
MAP estimate â(θMAP), even in the case of a symmetric posterior of the model’s parameters p(θ |x(1:N)) (Eq. (16)).

A.2. Comparison of gradients between relative entropy method and PCG

This section compares the gradients with respect to the parameters of the coarse potential θ c, between the proposed 
scheme and the relative entropy method. These are used for fitting the model parameters θ c. In our case, the gradient is 
given by:
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∂F
∂θc,k

=
N∑

i=1

(
< φk(X (i)) >qi(X (i)) − < φk(X) >pc(X |θc)

)
, (A.2)

whereas for the relative entropy method (when the objective FKL is given as in Eq. (10)):

∂FKL

∂θc,k
= (

< φk(R(x)) >pf(x) − < φk(X) >pc(X |θc)

)

≈ 1

N

N∑
i=1

(
φk(R(x(i)))− < φk(X) >pc(X |θc)

)
. (A.3)

In the latter case, the expectations with respect to pf(x) are estimated using the fine-scale data x(i) whereas in the former 
these involve averaging over the posterior of the CG variables X . This emphasizes the role of the CG variables play in our 
model as latent (hidden) generators of the fine-scale.

A.3. ARD prior

We adopt the Automatic Relevance Determination (ARD, [66]) which is formulated in the context of hierarchical Bayesian 
models. The prior on the parameters θ c is modeled as independent Gaussian for each θc,k with zero mean and precision 
hyper-parameter τk:

p(θ c|τ ) ≡
∏

k

N (θc,k|0, τ−1
k )︸ ︷︷ ︸

p(θc,k|τk)

. (A.4)

The precision (hyper-)parameters τk follow a Gamma distribution,

τk ∼ Gamma(τk|a0,b0). (A.5)

Anytime derivatives of the log-prior are needed, an inner-loop Expectation–Maximization scheme can be employed which 
is based on the same ideas presented previously. In particular, for any set of densities qk(τk) we can obtain a lower bound 
on the log-prior as follows:

log p(θ c) = log

(∏
k

∫
p(θc,k|τk) p(τk|a0,b0) dτk

)

=
∑

k

log
∫

qk(τk)
p(θc,k|τk) p(τk|a0,b0)

q(τk)
dτk

≥
∑

k

∫
qk(τk) log

p(θc,k|τk) p(τk|a0,b0)

qk(τk)
dτk (Jensen’s inequality) (A.6)

The optimal qk i.e. the posteriors p(τk|θc,k) (for which the lower bound becomes tight) can be analytically computed and 

are Gamma densities with parameters ak = a0 + 1
2 , bk = b0 + θ2

c,k
2 [67], where the current values of θc,k ’s are used. This leads 

to the extremely simple iterations of the following form [67]:

• E-step: evaluate:

〈τk〉p(τk|θc,k)
= ak

bk
= a0 + 1

2

b0 + θ2
c,k
2

. (A.7)

• M-step: evaluate:

∂ log p(θ c)

∂θc,k
= ∂

∂θc,k

∫
qk(τk) log p(θc,k|τk) dτk

= −
∫

qk(τk)τk dτk θc,k

= −〈τk〉p(τk|θc,k)
θc,k. (A.8)
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Appendix B. Numerical examples

B.1. SPC/E model, parameters and simulation details

The following SPC/E parameters as given in [36,75] are used for producing the fine-scale data.

• LJ-potential: σ = 3.166 Å, ε = 0.650 kJ
mol .

• Electrostatic load: qH = +0.4238 e, qO = −0.8476 e.
• Structural properties of rigid water model: bond-length lOH = 1.0 Å and bond-angle θHOH = 109.47◦ .
• Masses: mO = 15.994 g

mol and mH = 1.00794 g
mol .

B.1.1. Simulation steps
In this work, we consider a system of Nw = 100 water molecules at a temperature T = 300 K. The following steps for 

obtaining training data are performed:

1. NPT simulation with p = 1 bar and a timestep of �t = 2.0 fs. Simulate the system for t = 100 ns.
2. Use the last t = 80 ns for calculating the equilibrium box size. We found lbox = 14.5459665 Å.
3. Fix the box length to the one obtained from the previous step. Simulate the system in NVT ensemble for t = 45 ns with 

a timestep of �t = 2.0 fs. Use the last t = 40 ns and write the trajectory every 200 steps.

B.2. Radial distribution function

The radial distribution function g(r) is defined by,

g(r) =
〈

V

N2
aRDF(r)

〉
.

The discrete version follows with the number of bins nbin and a bin size �r:

g(r1) = 1

Nnbin

〈
aRDF(r1)

〉
ρideal

,

with,

ρideal = N/V ,

aRDF(r1) = n(r1)

�V
=

∑
i j

∫ r1+�r
r1

δ(ri j − r)dr
4
3π((r1 + �r)3 − r3

1)
.

B.3. Stillinger–Weber (SW) potential

The Stillinger–Weber (SW) potential originally proposed in [83] and extended in [81], contains both two- and three-body 
interactions. In this work, we make use only of the latter three-body contribution:

U SW(X) =
∑

j

∑
k �= j

∑
l>k

φSW
3 (r jk, R jl,ω jkl), (B.1)

where the three-body term φSW
3 (r jk, r jl, ω jkl) is given by:

φSW
3 (r jk, r jl,ω jkl) = λε

[
cosω jkl − cosω0

]2 exp

(
γ σ

r jk − a3σSW

)
exp

(
γ σ

r jl − a3σSW

)
, (B.2)

with r jk being the pairwise distances between molecules j and k and ω jkl is the angle between molecules j, k, l. The 
following values for the parameters were used [81]: λ = 0.762, ε = 83.5737, cosω0 = −0.487217, γ = 0.291321, a3 =
0.586097, σSW = 6.4144.
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Appendix C

Bayesian coarse-graining and
adaptive sequential model
refinement

C.1 Observable estimation for ALA-2

We are interested in estimating observables based on predictive models, in contrast
to those obtained through reference MD simulations. In general, observables are
evaluated as ensemble (MC) or phase (MD) averages,

∫
a(x)ptarget(x) dx, by making

use of qθ(x) and samples drawn by ancestral sampling.

C.1.1 Radius of gyration

We illustrate the radius of gyration (Rg) [68, 556], given as:

aRg(x) =

√
∑p mp‖xp − xCOM‖2

∑p mp
(C.1)

The sum in Equation (C.1) considers all system atoms p = 1, . . . , P, with the atom
mass mp and Cartesian coordinate xp of each atom. The center of mass of the peptide
is denoted by xCOM. A histogram of aRg(x) reflects the statistics of the peptide’s
average size, which characterize its various conformations [68].

C.1.2 Root-mean-square deviation

The root-mean-square deviation (RMSD) from a reference atomistic configuration
provides relevant structural information in the context of biochemistry. It often
refers to a α helical configuration which we denote with xα-ref. Histograms on the
RMSD reveal the frequency of deviations within a certain range. We calculate the
RMSD with

aRMSD(x) =

√√√√ 1
P

P

∑
p=1

(
xp − xα-ref,p

)2. (C.2)
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ABSTRACT

Extending spatio-temporal scale limitations of models for complex atomistic systems considered in biochemistry and materials
science necessitates the development of enhanced sampling methods. The potential acceleration in exploring the configurational
space by enhanced sampling methods depends on the choice of collective variables (CVs). In this work, we formulate the discovery
of CVs as a Bayesian inference problem and consider the CVs as hidden generators of the full-atomistic trajectory. The ability
to generate samples of the fine-scale atomistic configurations using limited training data allows us to compute estimates of
observables as well as our probabilistic confidence on them. The methodology is based on emerging methodological advances in
machine learning and variational inference. The discovered CVs are related to physicochemical properties which are essential for
understanding mechanisms especially in unexplored complex systems. We provide a quantitative assessment of the CVs in terms
of their predictive ability for alanine dipeptide (ALA-2) and ALA-15 peptide.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5058063

I. INTRODUCTION

Molecular dynamics (MD) simulations, in combination
with prevalent algorithmic enhancements and tremendous
progress in computational resources, have contributed to new
insights into mechanisms and processes present in physics,
chemistry, biology, and engineering. However, their applica-
bility in systems of practical relevance poses insurmountable
computational difficulties.1,2 For example, the simulation of
M = 105 atoms over a time horizon of a mere T ≈ 10−4 s with
a time step of ∆t = 10−15 s implies a computational time of
one year.3 A rugged free-energy surface and configurations
separated by high free-energy barriers lead to unobserved
conformations even in very long simulations.

Enhanced sampling methods4 provide a framework for
accelerating the exploration of the configurational space.5–11

These methods rely on the existence of a lower-dimensional

representation of the atomistic details. Lower-dimensional
system variables (reaction coordinates), capture the charac-
teristics of the system, allow us to understand relevant pro-
cesses and conformational changes,12 and can enable guided
and enhanced MD simulations. Reaction coordinates pro-
vide quantitative understanding of macromolecular motion,
whereas order parameters are of qualitative nature, as dis-
cussed in Ref. 13. In the following, we use the term collec-
tive variables (CVs), combining the quantitative and qualita-
tive properties of reaction coordinates and order parameters,
respectively. References 4 and 13 review the challenges in the
exploration of the free-energy landscape and the identifica-
tion of “good” collective variables.

Adding an appropriate biasing potential or force, based
on CVs, results in an accelerated exploration of the config-
urational space.13 Such algorithms might employ a constant
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bias term (e.g., umbrella sampling,14 hyperdynamics,15

accelerated MD,16 etc.) or a time-dependent one (e.g.,
local elevation,17 conformational flooding,18 metadynam-
ics,3,19,20 adaptive biasing force,21,22 etc.). The crucial ingre-
dient for almost all of the aforementioned algorithms is the
right choice of the collective variables. The potential bene-
fit and justification of enhanced sampling algorithms strongly
depend on the quality of the collective variables, as com-
prehensively elaborated in Refs. 23–25. Physical intuition,
experience gathered from previous simulation as well as
quantitative methods for dimensionality reduction [e.g., by
utilizing principal component analysis26 (PCA)], potentially
supports the choice of reasonable collective variables. For
complex materials-design problems and large-scale biochem-
ical processes, complexity exceeds our intuition and the
question of “good” collective variables remains unanswered.
Enhanced sampling methods employing inappropriate col-
lective variables can be outperformed by brute force MD
simulations.27 Thus, the identification of collective variables
or reaction coordinates poses an important and difficult
problem.

A systematic, robust, and general approach is needed for
the discovery of lower-dimensional representations. Recent
developments in dimensionality reduction methods provide
a systematic strategy for discovering CVs.13 For complete-
ness, we give a brief overview of significant tools address-
ing CV discovery and dimensionality reduction in the con-
text of molecular systems. An early study28 found a steep
decay in the eigenvalues of peptide trajectories indicating the
existence of a low-dimensional representation that is capa-
ble of capturing essential physics. This study is based on
PCA26,29 which identifies a linear coordinate transformation
for best capturing the variance. However, the linear coordi-
nate transformations employed merely describe local fluctua-
tions in the context of peptide trajectories. Multidimensional
scaling (MDS)30,31 identifies a lower-dimensional embedding
such that pairwise distances [e.g., root-mean-square deviation
(RMSD)] between atomistic configurations are best preserved.
A sketch map32 focuses on preserving “middle” ranged RMSD
between trajectory pairs. Middle ranged RMSD pairs are the
most relevant for observing pertinent behavior of the sys-
tem.32 An isometric feature map or ISOMAP33 follows a simi-
lar idea of preserving geodesic distances. The aforementioned
methods require dense sampling and encounter problems if
the training data are non-uniformly distributed.34–36 Further-
more, we note that these methods involve a mapping from the
atomistic configurations to the CVs, whereas predictive tasks
require a generative mapping from the CVs to the atomistic
configuration.

Another group of non-linear dimensionality reduction
methods follows the idea of approximating the eigenfunc-
tions of the backward Fokker-Plank operator37 by identify-
ing eigenvalues and eigenvectors of transition kernels. The
employed kernels resemble transition probabilities between
configurations that we aim to preserve. For example, the dif-
fusion map38–40 retains the diffusion distance by the identi-
fied coordinates for dynamic41 and stochastic systems.42 A

variation of diffusion maps exploits locally scaled diffusion
maps (LSDMaps)34 which calculate the transition probabili-
ties between two configurations, utilizing the RMSD instead
of an Euclidean distance. An additional local scale parameter,
indicating the distance around a specific configuration pre-
sumably, could be well approximated by a low-dimensional
hyperplane tangent. LSDMap is applied in Ref. 43 and
enhances the exploration of the configurational space, as
shown in Ref. 44. More recent approaches to collective vari-
able discovery work under a common variational approach
for conformation (VAC) dynamics45 and employ a combina-
tion of basis functions for defining the eigenfunctions to the
backward Fokker-Planck operator. One approach under VAC
was developed in the context of metadynamics19 combin-
ing ideas from time-lagged independent component anal-
ysis and well-tempered metadynamics.46 Further develop-
ments have focused on alternate distance metrics, relying
either on a kinetic distance which measures how slowly
configurations interconvert47 or on the commute distance48

which provides an extension (arising by integration) of the
former.

Several methods rely on the estimation of the eigen-
vectors of transition matrices which is an expensive task in
terms of computational cost. The need for “large” training
datasets (e.g., 10 000 datapoints are required for robustness
of the results13) limits the applicability of these methods to
less complex systems. We refer to Ref. 49 for a critical review
and comparison of the various methodologies mentioned
before.

In this work, we propose a data-driven reformulation of
the identification of CVs under the paradigm of probabilis-
tic (Bayesian) inference. The methodology implies a gener-
ative model, considering CVs as lower-dimensional (latent)
generators50 of the full atomistic trajectory. The focus fur-
thermore is on problems where limited atomistic training data
are available that prohibit the accurate calculation of statis-
tics for quantities of interest. Our approach is to compute an
approximation of the underlying probabilistic distribution of
the data. We then use this approximate distribution in a gen-
erative manner to perform accurate Monte Carlo estimation of
the quantities of interest. To account for the limited informa-
tion provided by small size training datasets, epistemic uncer-
tainties on quantities of interest are also computed within the
Bayesian paradigm.

In the context of coarse-graining atomistic systems,
latent variable models have been introduced in Refs. 51 and
52. We optimize a flexible non-linear mapping between CVs
and atomistic coordinates which implicitly specifies the mean-
ing of the CVs. The identified CVs provide physical/chemical
insight into the characteristics of the considered system. In
the proposed model, the posterior distribution of the CVs
for a given atomistic datapoint is computed. This posterior
provides a pre-image of the atomistic representation in the
lower-dimensional latent space. We utilize recent develop-
ments in machine learning and deep Bayesian modeling (auto-
encoding variational Bayes53,54). While typically deep learning

J. Chem. Phys. 150, 024109 (2019); doi: 10.1063/1.5058063 150, 024109-2

Published under license by AIP Publishing



The Journal of
Chemical Physics ARTICLE scitation.org/journal/jcp

models rely on huge amounts of data, we demonstrate the
robustness of the proposed methodology considering only
small and highly variable datasets (e.g., 50 datapoints com-
pared to 10 000 as required in the aforementioned meth-
ods). The proposed strategy requires significantly less data as
compared to MDS,30,31 ISOMAP,33 and diffusion map38,39,41

and simultaneously enables the quantification of uncertainties
arising from limited data. We also discuss how additional dat-
apoints can be readily incorporated by efficiently updating the
previously trained model.

Apart from the possibility of utilizing the discovered
CVs for dimensionality reduction and enhanced sampling, we
exploit them for predictive purposes, i.e., for generating new
atomistic configurations and estimating macroscopic observ-
ables. One could draw similarities between the identification
of CVs and the problem of identifying a good coarse-grained
representation.51,55–66 In addition, rather than solely obtain-
ing point estimates of observables, the Bayesian framework
adopted provides whole distributions which capture the epis-
temic uncertainty. This uncertainty propagates in the form of
error bars around the predicted observables.

Several recent publications focus on similar prob-
lems.67–69 The present work clearly differs from that of Ref. 69
where the data are provided in a pre-processed form of sine
and cosine backbone dihedral angles, i.e., not as the full-
atom configurations. The approach in Ref. 68 utilizes a pre-
reduced representation of heavy atom positions as training
data. While this is valid, it necessitates physical insight which
might be not available for unexplored complex chemical com-
pounds. In contrast, we rely on training data represented as
Cartesian coordinates comprising all atoms of the consid-
ered system. We do not consider any physically or chemi-
cally motivated transformation nor do we perform any pre-
processing of the dataset. Instead, we reveal, given the dimen-
sionality of the CVs, important characteristics (i.e., dihedral
angles and heavy atom positions) or less relevant fluctua-
tions (noise) from the full atomistic picture. This work is also
distinguished by following throughout a formalism based on
Bayesian learning. Instead of adopting or designing optimiza-
tion objectives or loss functions, we consistently work within
a Bayesian framework where the objective naturally arises.
Furthermore, this readily allows us to make use of sparsity-
inducing priors which reveal parsimonious features. The work
of Ref. 8 is based on auto-associative artificial neural net-
works (autoencoders) which allow the encoding and recon-
struction of atomistic configurations given an input datum.
The work of Ref. 8 relies on reduced Cartesian coordinates
in the form of backbone atoms which induces information
loss. In addition, the focus of Ref. 8 was on CV discovery
and enhanced sampling, whereas we focus on CV discovery
and obtaining a predictive model accounting for epistemic
uncertainty.

The structure of the rest of the paper is as follows.
Section II presents the basic model components, the use
of Variational Autoencoders (VAEs53) in the CV discovery,
and provides details on the learning algorithms employed.

Numerical evidence of the capabilities of the proposed frame-
work is provided in Sec. III. We identify CVs for alanine
dipeptide and show the correlation between the discovered
CVs and the dihedral angles. We furthermore assess the pre-
dictive quality of the discovered CVs and estimate observ-
ables augmented by credible intervals. We show the depen-
dence of credible intervals on the amount of training data.
We also present the results of a similar analysis for a more
complex and higher-dimensional molecule, i.e., the ALA-15
peptide. Finally, Sec. IV summarizes the key findings of
this paper and provides a brief discussion on potential
extensions.

II. METHODS

After introducing the main notational convention in the
context of equilibrium statistical mechanics, this section is
devoted to the key concepts of generative latent variable mod-
els and variational inference70 with emphasis on the identifi-
cation of collective variables in atomistic systems.

A. Equilibrium statistical mechanics

We denote the coordinates of atoms of a molecular
ensemble as x ∈Mf ⊂ Rnf , with nf = dim(x). The coordinates
x follow the Boltzmann-Gibbs density,

ptarget(x) =
1

Z( β)
e−βU(x), (1)

with the interatomic potential U(x), β = 1
kbT , where kb is the

Boltzmann constant and T is the temperature. The normaliza-
tion constant is given as Z(β) = ∫Mf

exp{−βU(x)} dx. MD simu-
lations71 or Monte-Carlo-based methods72 allow us to obtain
samples from the distribution defined in Eq. (1). In the follow-
ing, we assume that a dataset, X = {x(i) }Ni=1, has been collected,
where x(i) ∼ ptarget(x). N denotes the amount of datapoints
considered. The dataset X will be used for training the gen-
erative model to be introduced in the sequel. The underlying
assumption in this work is that the size of the available train-
ing dataset X is small and not sufficient to compute directly
the statistics of observables. Our focus is thus on deriving
an approximation to the distribution in Eq. (1) from which, in
a computationally inexpensive manner, one can sample suf-
ficient realizations of x to allow probabilistic estimates of
observables.

As elaborated in Ref. 13, the collection of a dataset X
that sufficiently captures the configurational space consti-
tutes a difficult problem of its own. Hampered by free-energy
barriers, a MD simulation is not guaranteed to visit all con-
formations of an atomistic system within a finite simulation
time. The discovery of CVs can facilitate the development
of enhanced sampling methods3,19,23 to address the efficient
exploration of the configurational space.

This study considers systems in equilibrium for a
given constant temperature T and consequently constant β.
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Optimally, the CVs discovered should be suitable for a range
of temperatures.25

B. Probabilistic generative models

Deep learning73 integrated with probabilistic modeling74

has impacted many research areas.75 In this paper, we empha-
size a subset of these models referred to as probabilistic
generative models.50,76

The objective is to identify CVs associated with relevant
configurational changes of the system of interest. We consider
CVs as hidden (low-dimensional) generators, giving rise to the
observed atomistic configurations x.77 Extending the variable
space of atomistic coordinates x by latent CVs denoted as
z ∈MCV ⊂ RnCV , with nCV = dim(z) and dim(z) � dim(x), allows
us to define a joint distribution over the observed data x and
latent CVs50,78 p(x, z). The joint distribution p(x, z) is written
as

p(x, z) = p(x |z) p(z). (2)

In Eq. (2), p(z) prescribes the distribution of the CVs and p(x |z)
represents the conditional probability of the full atomistic
coordinates x given their latent representation z. The prob-
abilistic connection between the latent CVs z and the atom-
istic representation x implicitly defines the meaning of the
CVs.

Marginalizing the joint representation of Eq. (2) with
respect to the CVs leads to p(x),

p(x) =
∫

MCV

p(x, z) dz =
∫

MCV

p(x |z) p(z) dz. (3)

Equation (3) provides a generative model for the atomistic
configurations x and will be utilized as an efficient estima-
tor for observables of the atomistic system. Standard autoen-
coders in the context of CV discovery8 do not yield a prob-
abilistic, predictive model which is the focus of this work.
With appropriate selection of p(z) and p(x |z), the result-
ing predictive distribution p(x) should resemble the atom-
istic reference ptarget(x) in Eq. (1). In order to quantify the
closeness of the approximating distribution p(x) and the
actual distribution ptarget(x), a distance measure is employed.
The KL-divergence is one possibility out of the family of
α-divergences79–81,137 measuring the similarity between
ptarget(x) and p(x). The non-negative valued KL-divergence is
zero if and only if the two distributions coincide, which leads
to the minimization objective with respect to p(x) of the fol-
lowing
form:

DKL(ptarget(x) | |p(x)) = −
∫

Mf

ptarget(x) log
p(x)

ptarget(x)
dx

= −
∫

Mf

ptarget(x) log p(x) dx

+
∫

Mf

ptarget(x) log ptarget(x) dx. (4)

We introduce a parametrization θ of the approximating dis-
tribution as p(x |θ) = ∫MCV

pθ (x |z)pθ (z) dz. Instead of mini-
mizing the KL-divergence with respect to p(x), one can opti-
mize the objective with respect to the parameters θ. We
note that the minimization of Eq. (4) is equivalent to max-
imizing the expression ∫Mf

ptarget(x) log p(x) dx. If we con-
sider a data-driven approach, where ptarget(x) is approxi-
mated by a finite-sized dataset X, we can write the prob-
lem as the maximization of the marginal log-likelihood
log pθ (x(i), . . ., x(N)),

log p(X |θ) =
N∑

i=1

log p(x(i) |θ)

=

N∑

i=1

log
(∫

MCV

pθ (x(i) |z(i)) pθ (z(i)) dz(i)
)
. (5)

Maximizing Eq. (5) with respect to the model parameters θ
results in the maximum likelihood estimate (MLE) θMLE. By
introducing a prior p(θ) on the parameters, one can aug-
ment this optimization problem to compute the Maximum a
Posteriori (MAP) estimate82–84 of θ as follows:

arg max
θ

{
log p(X |θ) + log p(θ)

}
. (6)

The full posterior of the model parameters θ could also be
obtained by applying Bayes’ rule,

p(θ |X) =
p(X |θ)p(θ)

p(X)
. (7)

Quantifying uncertainties in θ enables us to capture the epis-
temic uncertainty introduced from the limited training data.
The discovery of CVs through Bayesian inference is elaborated
in the sequel.

C. Inference and learning

This section focuses on the details of inference and
parameter learning for the generative model introduced in
Eq. (3). Both tasks are facilitated by approximate variational
inference85 and stochastic backpropagation54,86,87 which we
discuss below.

Direct optimization of the marginal likelihood p(x |θ)
requires the evaluation of p(x |θ) = ∫MCV

pθ (x |z)pθ (z) dz which
constitutes an intractable integration over MCV. The pos-
terior over the latent CVs, pθ (z |x) = pθ (x |z)pθ (z)/p(x |θ), is
also computationally intractable. Therefore, direct application
of expectation-maximization88,89 is not feasible. To this end,
we reformulate the marginal log-likelihood for the dataset
X = {x(i) }Ni=1 by introducing auxiliary densities qφ (z(i) |x(i))
parametrized by φ. The meaning of qφ (z(i) |x(i)) will be spec-
ified later in the text. The marginal log-likelihood is as
follows:
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log p(X |θ) =
N∑

i=1

log p(x(i) |θ)

=

N∑

i=1

log
∫

MCV

pθ (x(i) |z(i))pθ (z(i)) dz(i)

=

N∑

i=1

log
∫

MCV

qφ (z(i) |x(i))
pθ (x(i) |z(i))pθ (z(i))

qφ (z(i) |x(i))
dz(i)

≥
N∑

i=1

∫

MCV

qφ (z(i) |x(i)) log
pθ (x(i) |z(i))pθ (z(i))

qφ (z(i) |x(i))
dz(i)

︸                                                         ︷︷                                                         ︸
L(θ,φ;x(i))

, (8)

where in the last step we have made use of Jensen’s inequality.
Note that for each datapoint x(i), one latent CV z(i) is assigned.
The lower-bound of the marginal log-likelihood is

L(θ,φ;X) =
N∑

i=1

L(θ,φ; x(i)) (9)

and implicitly depends on φ through the parametrization
of qφ (z |x). For each datapoint x(i) and from the definition
of L(θ,φ; x(i)), one can rewrite the marginal log-likelihood
log p(x(i) |θ) as

log p(x(i) |θ) = DKL
(
qφ (z(i) |x(i)) | |pθ (z(i) |x(i))

)

+L(θ,φ; x(i)) ≥ L(θ,φ; x(i)). (10)

Since the KL-divergence is always non-negative, the inequal-
ities in Eqs. (8) and (10) become equalities if and only if
qθ (z(i) |x(i)) = pθ (z(i) |x(i)) as in this case DKL

(
qφ (z(i) |x(i)) | |pθ (z(i) |x(i))

)

= 0. Thus qφ (z(i) |x(i)) can be thought of as an approxima-
tion of the true posterior over the latent variables z. If the
lower-bound gets tight, qφ (z(i) |x(i)) equals the exact posterior
pθ (z |x(i)).

Equation (8) can also be written as follows:

L(θ,φ;X) =
N∑

i=1

Eqφ (z(i) |x(i))[− log qφ (z(i) |x(i)) + log pθ (x(i), z(i))]

= −
N∑

i=1

DKL
(
qφ (z(i) |x(i)) | |pθ (z(i))

)

+
N∑

i=1

Eqφ (z(i) |x(i))[log pθ (x(i) |z(i))]. (11)

It is clear from Eq. (11) that the lower-bound balances the
optimization of the following two objectives:53

1. Minimizing
∑N

i=1 DKL
(
qφ (z(i) |x(i)) | |pθ (z)

)
regularizes the

approximate posterior qφ (z(i) |x(i)) such that, on average
over all datapoints x(i), it resembles pθ (z). We expect
highly probable atomistic configurations x(i) to be
encoded to CVs z(i) located in regions with high proba-
bility mass in pθ (z). The approximate posterior qφ (z(i) |x(i))

over the latent CVs z accounts for this and supports
findings presented in Ref. 68.

2. Eqφ (z(i) |x(i))[log pθ (x(i) |z(i))] is the negative expected recon-
struction error employing the encoded pre-image of
the atomistic configuration x(i) in the latent CV space.
For example, assuming pθ (x(i) |z(i)) to be a Gaussian
with mean µ(z(i)) and variance σ2, one can rewrite
Eqφ (z(i) |x(i))[log pθ (x(i) |z(i))] as

Eqφ (z(i) |x(i))[log pθ (x(i) |z(i))]

= Eqφ (z(i) |x(i))


− 1

2

(
x(i) − µ(z(i))

)2

σ2


+ const.

∝ −Eqφ (z(i) |x(i))

[(
x(i) − µ(z(i))

)2
]

= −
∫

MCV

qφ (z(i) |x(i))
(
x(i) − µ(z(i))

)2
dz(i). (12)

The second line of Eq. (12) is the negative expected error
of reconstructing the atomistic configuration x(i) through
the decoder pθ (x(i) |z(i)). The expectation [see the last
line in Eq. (12)] is evaluated with respect to qφ (z(i) |x(i))
and therefore with respect to all CVs z(i) probabilistically
assigned to x(i).

The approximate posterior qφ of the latent variables z
serves as a recognition model and is called the encoder.53

Atomistic configurations x can be mapped via qφ (z |x) to their
lower-dimensional representation z in the CV space. Hence,
each z could be interpreted as a (latent) encoding of an x.
Its counterpart, the decoder pθ (x |z), probabilistically maps
CVs z to atomistic configurations x. As will be demonstrated
in the sequel, z sampled from pθ (z) will be used to recon-
struct atomistic configurations via pθ (x |z). The correspond-
ing graphical model is presented in Fig. 1. Note that we do
not require any physicochemical meaning assigned to the
latent CVs that are identified implicitly during the training
process.

The (approximate) inference task of qφ (z |x) has been re-
formulated as an optimization problem with respect to the
parameters φ. These will be updated in combination with the
parameters θ as described in the following. At this point, we
emphasize that the lower-bound L(θ,φ; x(i)) on the marginal
log-likelihood (unobserved CVs are marginalized out) of Eq. (11)
has been used as a negative “loss” function in non-Bayesian
applications of autoencoders in the context of atomistic sim-
ulations as in Refs. 67 and 69.

In order to carry out the optimization L(φ, θ;X) with
respect to {φ, θ}, first-order derivatives are needed of terms
involving expectations with respect to qφ as it can be seen in
Eq. (11). Consider in general a function f(z) and the correspond-
ing expectation Eqφ (z|x)[f(z)]. Its gradient with respect to φ can
be expressed as

∇φEqφ (z|x)[ f(z)] = Eqφ (z|x)
[
f(z)∇qφ (z|x) log qφ (z |x)

]
, (13)
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FIG. 1. Probabilistic graphical model representation following Ref. 53 with the
latent CV representation z( i ) of each configuration x( i ) obtained by the approx-
imate variational posterior qφ (z( i ) |x( i )) using the parametrization φ. The varia-
tional approximation is indicated with dashed edges and the generative model
pθ (x |z)p(z) with solid edges. θ is the parametrization of the generative model.

and the expectation Eqφ (z|x)[·] on the right hand-side can be
approximated via a Monte-Carlo (MC) estimate using sam-
ples of z drawn from qφ (z |x). It is, however, known86 that the
variance of such estimators can be very high which adversely
affects the optimization process. The high variance of the
estimator in Eq. (13) can be addressed with the so-called
reparametrization trick.53,54 It is based on expressing z by
auxiliary random variables ε and a differentiable transforma-
tion gφ (ε; x) as

z = gφ (ε; x) with ε ∼ p(ε). (14)

Using the mapping, gφ : ε → z, we can write the following for
the densities p(ε) and qφ (z |x):

qφ (z |x) = p
(
g−1
φ (z; x)

) �����
∂g−1

φ (z; x)

∂z

�����. (15)

In Eq. (15), g−1
φ : z→ ε denotes the inverse function of gφ which

gives rise to ε = g−1
φ (z; x). Several such transformations have

been documented for typical densities (e.g., Gaussians).90 The
change of variables leads to the following expression for the
gradient:

∇φEqφ (z|x)[ f(z)] = Ep(ε)[∇φ f(gφ (ε; x))]

= Ep(ε)


∂f(gφ (ε; x))

∂z
∂gφ (ε; x)

)

∂φ

 , (16)

which can in turn be calculated by Monte Carlo using samples
of ε drawn from p(ε). Based on this, we define the following
modified estimator for the lower-bound:53

L̃(φ, θ; x(i)) = −DKL
(
qφ (z(i) |x(i)) | |pθ (z)

)
+

1
L

L∑

l=1

log pθ (x(i) |z(i,l)),

with

z(i,l) = gφ (ε(l); x(i)) and ε(l) ∼ p(ε). (17)

Note that for the particular forms of qφ (z(i) |x(i)) and pθ (z)
selected in Sec. III A 2, DKL

(
qφ (z(i) |x(i)) | |pθ (z)

)
becomes an ana-

lytically tractable expression. In order to increase the com-
putational efficiency, we work with a sub-sampled minibatch
XM comprising M datapoints from X, with M < N. This leads
to bN/Mc minibatches, each uniformly sampled from X. The
corresponding estimator of the lower-bound on the marginal
log-likelihood is then given as

L(φ, θ;X) ' L̃M
(θ,φ;XM) =

N
M

M∑

i=1

L̃(θ,φ; x(i)), (18)

with L̃(θ,φ; x(i)) computed in Eq. (17). The factor N/M in
Eq. (18) rescales

∑M
i=1 L̃(θ,φ; x(i)) such that the lower-bound

L̃M
(θ,φ;XM) computed by M < N datapoints approximates

the actual lower-bound L(φ, θ;X) computed with N data-
points.53 However, note that using a subset of the datapoints
unavoidably increases the variance in the stochastic gradient
estimator Eq. (17). Strategies compensating this increase are
presented in Refs. 91 and 92, and a rigorous study of optimiza-
tion techniques with enhancements in the context of coarse-
graining is given in Ref. 62. The overall inference procedure is
summarized in Algorithm 1.

We finally note that new data can be readily incorpo-
rated by augmenting accordingly the objective and initializ-
ing the algorithm with the optimal parameter values found
up to that point. In fact this strategy was adopted in the
results presented in Sec. III and led to significant efficiency
gains. One can envision running an all-atom simulation which
sequentially generates new training data that are automat-
ically and quickly ingested by the proposed coarse-grained
model which is in turn used to produce predictive estimates,
as will be described in the sequel. In contrast, other dimen-
sionality reduction methods based on the solution of an eigen-
value problem are required to solve a new system for the
whole dataset when new data are presented.

D. Predicting atomistic configurations—Leveraging
the exact likelihood

After training the model as described in Sec. II C,
we are interested in obtaining the predictive distribution
p(x |θ) = ∫MCV

pθ (x |z)pθ (z) dz [see Eq. (3)] which poses a
demanding computational task. One approach for predicting
configurations x distributed according to p(x |θ) is ancestral
sampling. First, one can generate a sample zl from pθ (z) and
second sample x(k ,l) ∼ pθ (x |zl). The variance of such estima-
tors significantly increases with increasing dim(z). Ancestral
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Algorithm 1. Stochastic variational inference algorithm.

{θ, φ}← Initialize parameters.

repeat

XM ← Random minibatch of M datapoints drawn from dataset X.

ε ← Random sample(s) from noise distribution p(ε).

g← ∇φ,θL̃M
(φ, θ;XM) Calculate gradients with the estimator in Eq. (18).

{φ, θ}← Update parameters with gradient g (e.g., employing ADAM93).

until Convergence of {θ, φ}.

return {θ, φ}

sampling does not account for training the model by employ-
ing an approximate posterior qφ (z |x) instead of the actual pos-
terior pθ (z |x) of the CVs z. The Metropolis-within-Gibbs sam-
pling scheme94 accounts for grounding the optimization of
the objective in Eq. (11) on a variational approximation. This
approach builds upon findings in Ref. 54 and proposes that
generated samples x follow a Markov chain (zt, xt) for steps
t ≥ 1. Reference 94 proposes employing the following
Metropolis95,96 update criterion ρt reflecting a ratio of impor-
tance ratios:

ρt =

pθ (xt−1 |z̃t) pθ (zt)
pθ (xt−1 |zt−1) pθ (zt−1)

qφ (z̃t |xt−1)
qφ (zt−1 |xt−1)

. (19)

Equation (19) provides the needed correction when using the
approximate latent variable posterior qφ (z |x). When the CV’s
exact posterior is identified, i.e., when DKL(qφ (z |x) | |pθ (z |x))
= 0, all proposals zt in Algorithm 2 are accepted with ρt = 1.

E. Prior specification

The recent work of Ref. 94 discusses the pitfalls of
overly expressive, deep, latent variable models which can yield
infinite likelihoods and ill-posed optimization problems.97

We address these issues by regularizing the log-likelihood
with functional priors.98,99 The prior contribution is added
as an additional component in the log-likelihood, as indi-
cated in Eq. (6). In addition to enhanced stability during train-
ing,94 sparsity inducing priors alleviate the overparameterized
nature of complex neural networks.

We adopt the Automatic Relevance Determination
(ARD100) model which consists of the following distributions:

p(θ |τ) ≡
∏

k

N(θk |0,τ−1
k ), τk ∼ Gamma(τk |a0, b0). (20)

Equation (20) implies modeling each θk with an indepen-
dent Gaussian distribution. The Gaussian distribution has
zero-mean and an independent precision hyper-parameter
τk, modeled with a (conjugate) Gamma density. The resulting
prior p(θk) follows (by marginalizing the hyper-parameter τk) a
heavy-tailed Student’s t-distribution. This distribution favors
a priori sparse solutions with θk close to zero. In order to
compute derivatives of the log-prior, required for learning the
parameters θ, we treat the τk ’s as latent variables in an inner-
loop expectation-maximization scheme101 which consists of
the following steps:

Algorithm 2. Metropolis-within-Gibbs sampler.94

Input Trained model pθ (x |z)pθ (z) and approximate posterior qφ (z |x). Total steps T.

Initialize (z0, x0).

for t = 1 to T do

z̃t ∼ qφ (z |xt−1) Draw proposal z̃t from the approximate posterior qφ (z |xt−1).

ρt =
pθ (xt−1 |z̃t) pθ (zt)

pθ (xt−1 |zt−1) pθ (zt−1)
qφ (zt−1 |xt−1)
qφ (z̃t |xt−1)

Estimate the Metropolis acceptance ratio, correcting for

the use of the approximate posterior distribution qφ (z |x).

zt =

{z̃t with probability ρt

zt−1 with probability 1 − ρt.

xt ∼ pθ (x |zt)

end for

return x1:T.
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Algorithm 3. Predictive collective variable discovery.

Input Dataset X with N samples x(i) ∼ ptarget(x).

1: {θ, φ}← Specify the generative model pθ (z), pθ (x |z) in Eq. (3) and the approximate posterior

of the latent CVs qφ (z |x) introduced in Eq. (8) with the corresponding parameters θ and φ,

respectively.

2: {θMAP, φMAP}←Maximize the lower-bound in Eq. (8) with stochastic variational inference,

see Algorithm 1, and obtain the MAP estimates of the model parameters θ and φ.

3: p(θ |X)← Perform approximate Bayesian inference for obtaining the posterior

distribution of the parameters of the generative model θ. See Sec. II F.

4: Predict the atomistic trajectory with Algorithm 2 for samples from the approximate

posterior of the generative model parameters θj ∼ p(θ |X).

5: Estimate credible intervals of observables. This step is summarized in Algorithm 4.

Return Probabilistic estimates of observables accounting for epistemic uncertainty.

• E-step—evaluate:

〈
τk

〉
p(τk |θk) =

a0 + 1
2

b0 +
θ2

k
2

. (21)

• M-step—evaluate:

∂ log p(θ)
∂θk

= −Ep(τk |θk)[τk]θk. (22)

The second derivative of the log-prior with respect to
θ is obtained as

∂2 log p(θ)
∂θk∂θl

=

−Ep(τk |θk)[τk], if k = l,

0, otherwise.
(23)

The ARD choice of the hyper-parameters is
a0 = b0 = 1.0 × 10−5. In similar settings, e.g., coarse-
graining of atomistic systems, the ARD prior identi-
fied the most salient features,51 whereas in this con-
text it improves stability and turns off unnecessary
parameters for describing the training data.

F. Approximate Bayesian inference for model
parameters—Laplace’s approximation

This subsection addresses the calculation of an approxi-
mate posterior of the model parameters θ. Thus far, we have
considered point estimates of the model parameters θ (either
MLE or MAP). A fully Bayesian treatment, however, requires
the evaluation of the normalization constant of the exact pos-
terior distribution p(θ |X) of the model parameters θ, which
is computationally impractical. We advocate an approxima-
tion to the posterior of θ that is based on Laplace’s method.77

The latter has been rediscovered as an efficient approximation
for weight uncertainties in the context of neural networks in
Ref. 102.

In Laplace’s approach, the exact posterior is approxi-
mated with a normal distribution with mean θMAP and covari-
ance, the inverse of the negative Hessian of the log-posterior
at θMAP. Here, we assume a Gaussian with diagonal covariance
matrix SL = diag(σ2

L) as follows:

p(θ |X) ≈N
(
µL,SL = diag(σ2

L)
)
, (24)

with

µL = θMAP, (25)

and the diagonal entries of S−1
L ,

σ−2
L,k = −

∂2L(φ, θ;X)
∂θ2

k

�����θMAP ,φMAP

+ Ep(τk |θk)[τk], (26)

where the term Ep(τk |θk)[τk] arises from the prior via Eq. (23).
The quantities in Eqs. (25) and (26) are obtained at the
last iteration (upon convergence) of the auto-encoding vari-
ational Bayes algorithm. We summarize the procedure in
Algorithm 3.

III. NUMERICAL ILLUSTRATIONS

Section III is devoted to the application of the proposed
procedure for identifying collective variables of alanine dipep-
tide (ALA-2103,104) as well as of a longer peptide, i.e., ALA-15.
We discuss the performance and robustness of the proposed
methodology in the presence of a small amount of training
data and emphasize the predictive capabilities of the model
by the Ramachandran plot105 and the radius of gyration. The
predictions are augmented by error bars capturing epistemic
uncertainty. The source code and data needed to reproduce
all results presented in Secs. III A and III B are available at
https://github.com/cics-nd/predictive-cvs.
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FIG. 2. Definition of the dihedral angles
and the labelling of characteristic modes
as utilized in this paper. (a) ALA-2 pep-
tide with indicated dihedral angles. (b)
Characteristic conformations and their
labelling as used in the sequel.

A. ALA-2

1. Simulation of ALA-2
Alanine dipeptide consists of 22 atoms leading to dim(x)

= 66 in a Cartesian representation comprising the coordinates
of all atoms which we will use later on as the model input.
The actual degrees of freedom (DOF) are 60 after removing
rigid-body motion. It is well-known that ALA-2 exhibits dis-
tinct conformations which are categorized depending on the
dihedral angles (φ, ψ) [as indicated in Fig. 2(a)] of the atomistic
configuration. We label the three characteristic modes as α,
β-1, and β-2 in accordance with Ref. 106 [see Fig. 2(b)].

The procedure for generating the training data for ALA-2
is similar to that in Ref. 107. The atoms of the alanine dipep-
tide interact via the AMBER ff96108–110 force field, and we

employ an implicit water model based on the generalized
Born/solvent accessible surface area model.111,112 However,
we note that an explicit water model would better repre-
sent an experimental environment. We employ an Andersen
thermostat, and the simulations were carried out at constant
temperature T = 330 K using Gromacs.113–119 The time step
is taken as ∆t = 1 fs with an equilibration phase of 50 ns.
The training dataset consisted of snapshots taken every 10 ps
after the equilibration phase. Rigid-body motions have been
removed from the dataset.

For demonstrating the encoding into the latent CV space
of atomistic configurations not contained in the training
dataset, we used a test dataset selected so that the dihedral
angles (φ, ψ) had values belonging to all three modes, i.e., α,
β-1, and β-2 [defined in Fig. 2(b)].

FIG. 3. Schematic of the AEVB depicting
the employed network architecture. Fully
connected linear layers are denoted
with l( i ) and non-linear activation func-
tions with a( i ). The indices φ and θ
indicate encoding and decoding net-
works, respectively. The maximization of
the lower-bound on the marginal log-
likelihood L(θ,φ; X ) in Eq. (11) simulta-
neously optimizes the parametrization of
the encoder and decoder. The first term
in L(θ,φ; X ) accounts for the recon-
struction of the training data x( i ) with
z( i ) distributed according to qφ (z( i ) |x( i )).
The second term, in aggregation of all
data x( i ), ensures that qφ (z( i ) |x( i )) is
close to p(z).
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TABLE I. Network specification of the encoding neural network with d1 = 50, d2 = 100, and d3 = 100.

Linear layer Input dimension Output dimension Activation layer Activation function

l(1)φ dim(x) d1 a(1) SeLua

l(2)
φ d1 d2 a(2) SeLu

l(3)
φ d2 d3 a(3) Log sigmoidb

l(4)
φ d3 dim(z) None . . .

l(5)
φ d3 dim(z) None . . .

aSeLu: a(x) =

α(ex − 1) if x < 0,

x otherwise.
See Ref. 126 for further details.

bLog sigmoid: a(x) = log 1
1+e−x .

2. Model specification
The model requires the specification of three compo-

nents. Two components are needed to describe the gener-
ative model p(x |θ): the probabilistic mapping pθ (x |z) and the
distribution of the CVs pθ (z). The third component is the
approximate posterior qφ (z |x) of the latent CVs, as shown in
Eq. (8).

Following Ref. 53, the distribution of the CVs is taken to
be a standard Gaussian,

pθ (z) = p(z) =N(z;0, I). (27)

The simplicity in the distribution in Eq. (27) is compensated by
a flexible mapping from z to the atomistic coordinates x. This
probabilistic mapping (decoder) is given by a parametrized
Gaussian as follows:

pθ (x |z) =N(x; µθ (z),Sθ ), (28)

where

µθ (z) = fµθ (z) (29)

is a non-linear mapping z 7→ fµθ (z) ( fµθ : RnCV 7→ Rnf ) para-
metrized by an expressive multilayer perceptron.120–122

We consider a diagonal covariance matrix, i.e.,
Sθ = diag(σ2

θ ),94 where its entries σ2
θ,j are treated as model

parameters and do not depend on the latent CVs z. In order
to ensure the non-negativity of σ2

θ,j > 0 while performing

unconstrained optimization, we operate instead on logσ2
θ,j.

The approximate posterior qφ (z(i) |x(i)) of the latent vari-
ables (encoder, approximating pθ (z(i) |x(i))) introduced in Eq. (8)
is modeled by a Gaussian with flexible mean and variance rep-
resented by a neural network. For each pair of x(i), z(i) [for
notational simplicity, we drop the index (i)],

qφ (z |x) =N(z; µφ (x),Sφ (x)), (30)

where the covariance matrix is assumed to be diagonal, i.e.,
Sφ (x) = diag

(
σ2

φ (x)
)
. Furthermore µφ (x) and logσ2

φ (x) are
taken as the outputs of the encoding neural networks fµφ (x)
and fσφ (x), respectively,

µφ (x) = fµφ (x) and logσ2
φ (x) = fσφ (x). (31)

We provide further details later in this section along with the
structure of the employed networks. In our model, we assume
a diagonal Gaussian approximation for qφ (z |x).

We are aware that the actual, but intractable, posterior
pθ (z |x) could differ from a diagonal Gaussian and even from
a multivariate normal distribution. However, the low vari-
ance σ2

φ observed in test cases justifies the assumption of a
diagonal Gaussian in this context. An enriched model for the
approximate posterior qφ (z |x) over the CVs could rely on, e.g.,
normalizing flows.123 Recent developments on autoregres-
sive flows124 overcome the practical restriction of normaliz-
ing flows to low-dimensional latent spaces. This discussion
equally holds for the assumption of a Gaussian with a diag-
onal covariance matrix for the generative distribution pθ (x |z).
In the latter case, the diagonal entries of the covariance matrix

TABLE II. Network specification of the decoding neural network with d{1,2,3} as defined in Table I.

Linear layer Input dimension Output dimension Activation layer Activation function

l(1)θ dim(z) d3 ã(1) Tanh
l(2)
θ d3 d2 ã(2) Tanh

l(3)
θ d2 d1 ã(3) Tanh

l(4)
θ d1 dim(x) None . . .
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FIG. 4. Prediction of the radius of gyration with differing networks, in terms of (a) the dimensionality of the layers and (b) regarding the type of activation functions used.

Changes in the network specification lead to similar predictions. This model has been trained with a dataset of size N = 500. (a) Varying dimensionality of the layers l(i){θ,φ} .
The labels represent the dimensionality of the layers in the format d1 − d2 − d3 as specified in Tables I and II. We use the activation functions as denoted in Tables I and II.
(b) Testing different activation functions for a( i ). The labels specify the utilized activation functions in the following manner: a(1) − a(2) − a(3) − ã(1) − ã(2) − ã(3). We use the
abbreviations: t: Tanh, s: SeLu, and ls: Log sigmoid.

Sθ = diag(σ2
θ ) were modeled as parameters independent of z.

Using either Sθ = diag(σ2
θ ) or introducing a dependency on

the latent CVs, Sθ (z) = diag(σ2
θ (z)) does not influence the pre-

dictive quality in terms of observables and predicted atomistic
configurations. This statement is particularly valid when an
expressive model for the mean µθ (z) in pθ (x |z) (as in this work)
is considered. It would be of interest employing more complex
noise models for pθ (x |z) which could be achieved by a
Cholesky parametrization.125 This might reveal structure cor-
relations while reducing the need for higher complexity in
µθ (z).

As noted in Eq. (17), we employ the reparametrization trick
by writing each random variable z(i ,l) ∼ qφ (z(i) |x(i)) as

FIG. 5. Predicted radius of gyration for models utilizing different dim(z). The
predictions are based on a model as specified in Tables I and II with N = 500.

z(i,l) = gφ (ε(l); x(i)) = µφ (x(i)) + σφ (x(i)) � ε(l) (32)

and

ε(l) ∼ p(ε) =N(0, I), (33)
where � denotes the element-wise vector product.

We utilize the following structure for the decoding neural
network fµθ (z):

fµθ (z) =
(
l(4)
θ ◦ ã(3) ◦ l(3)

θ ◦ ã(2) ◦ l(2)
θ ◦ ã(1) ◦ l(1)θ

)
(z). (34)

FIG. 6. Representation of the z-coordinates of the training data X with N = 500
in the CV space (yellow diamonds). Using the trained model and the mean
of qφ (z |z), we computed the z-coordinates of 1527 test samples corre-
sponding to different conformations of the alanine dipeptide to α (black),
β-1 (blue), and β-2 (red). Without any prior physical information, the encoder
yields three distinct clusters in the CV space.
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The encoding networks for obtaining µφ (x) and σ2
φ (x) of

the approximate posterior qθ (z |x) over the latent CVs share
the structure,

fφ (x) =
(
a(3) ◦ l(3)

φ ◦ a(2) ◦ l(2)
φ ◦ a(1) ◦ l(1)φ

)
(x), (35)

which gives rise to fµφ (x) and fσφ (x) with

fµφ (x) = l(4)
φ ( fφ (x)) and fσφ (x) = l(5)

φ ( fφ (x)). (36)

In Eqs. (34)–(36), we consider linear layers l(i) of a variable
y with l(i)(y) = W(i)y + b(i) and non-linear activation func-
tions denoted with a(·). The indices φ and θ of the linear
layers l(i) reflect correspondence to either the encoding or

FIG. 7. Ramachandran plots estimated with the training data X (left column), using predictions of the trained model (middle column), and the reference (right column,
estimated with N = 10 000). Each row refers to different sizes N of training datasets (the figure on the right column is repeated to allow easy comparison with the results on
the first two columns). The represented predictions are obtained by applying Algorithm 2 with T = 10 000 samples. The generative nature of the model allows more accurate
estimates than when using the training data alone. In addition, the Bayesian approach allows for predictions with their associated uncertainties as discussed subsequently.
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FIG. 8. Representation of the z-coordinates of the training data X with N = 50 in the CV space (yellow diamonds). Using the trained model and the mean of qφ (z |z), we
computed the z-coordinates of 1527 test samples corresponding to different conformations of the alanine dipeptide to α (black), β-1 (blue), and β-2 (red). In the case of
limited training data, the ARD prior facilitates the identification of physically meaningful CVs (a) compared to the representation (b) obtained without the ARD prior. Note that
the changed positioning of the conformations in the CV space compared to Fig. 6 is due to symmetries in pθ (z).

decoding network, respectively. φ comprises all parameters
of the encoding networks fµφ (x) and fσφ (x), θ all parameters of
the decoding network fθ (z) including the parameters σ2

θ dis-
cussed in Eq. (28). We differentiate the encoding and decoding

activation functions by denoting them as a(i) and ã(i), respec-
tively. All layers considered were fully connected. The general
architecture of the neural networks employed and how these
affect the objective L(θ,φ;X) are depicted in Fig. 3.

FIG. 9. Predicted configurations x
(including dihedral angle values) for
{z |z1 = {−3.5, −2.5, . . ., 3.5}, z2 = 0}
with µθ (z) of pθ (x |z). As one moves
along the z1 axis, we obtain for the given
CVs atomistic configurations x reflecting
the conformations α, β-1, and β-2. All
rendered atomistic representations in
this work are created by VMD.128
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FIG. 10. Visualization of the mean prediction (a) for a sample z0 ∼ p(z), obtained from the decoding network µθ (z0) = fθ (z0), and realizations [(b)–(d)] x j ,0 ∼ pθ (x |z0).
Less relevant positions of the outer hydrogen atoms are captured by the noise σθ of the model pθ (x |z0) = N(µ(z0

θ ),Sθ = diag(σ2
θ )). (a) Mean prediction µθ (z0) for a

sample z0 ∼ p(z). (b) Realization x0,0 ∼ pθ (x |µθ (z0),Sθ = diag(σ2
θ )). (c) Realization x1,0 ∼ pθ (x |µθ (z0),Sθ = diag(σ2

θ )). (d) Realization x2,0 ∼ pθ (x |µθ (z0),
Sθ = diag(σ2

θ )).

The optimization of the objective is carried out by a
stochastic gradient ascent algorithm. In our case, we employ
ADAM93 with the parameters chosen as α = 0.001, β1 = 0.9,
β2 = 0.999, εADAM = 1.00 × 10−8. Gradients of the lower-bound
L(θ,φ;X) with respect to the model parametrization {φ, θ} are
estimated by the backpropagation procedure.120 The required
gradients for optimizing the parameters σ2

θ can be computed
analytically. For an entry σ2

j,θ , we can write the following:

∂L(θ,φ; x(i))
∂ logσ2

j,θ

=
∂ log pθ (x(i) |z)
∂ logσ2

j,θ

=
∂

∂ logσ2
j,θ

*...,
− 1

2

dim(x(i))∑

j=1

(
x(i)

j − µj,θ (z)
)2

σ2
j,θ

+///-
=

∂

∂ logσ2
j,θ

*...,
− 1

2

dim(x(i))∑
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. (37)

Studying different combinations of activation functions
and layers for the encoding network fµ,σ

φ (x) and the decod-
ing network fµθ (z) led to the network architecture depicted
in Tables I and II, respectively. This network provided a
repeatedly stable optimization during training. Variations of
the given network architecture resulted in similar predictive

capabilities, as shown in Fig. 4. Stability is not limited to sym-
metric encoding and decoding activation functions. An auto-
mated approach for selecting or learning the best architecture
is an active research area.127 Increasing the dimension of z
did not improve the predictive capabilities, as shown in Fig. 5.
This implies that CVs with dim(z) = 2 suffice to capture the
physics encapsulated in the ALA-2 dataset with dim(x) = 66 or
60 DOF.

3. Results
In the following illustrations, we trained the model by

varying the number of snapshots N. We utilized a sub-sampled

FIG. 11. Predicted dihedral angles (φ, ψ) given the latent variables z ∈ [−4, 4]2.
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FIG. 12. Predicted dihedral angles (φ, ψ) given the latent variables (a) {z1, z2 |z1 ∈ [−4, 4], z2 = 0} and (b) {z1, z2 |z1 = 0, z2 ∈ [−4, 4]}.

batch of size M = 64 from the dataset of size N. In cases where
N < 64, we set M = N. The hyper parameters of the ARD prior
in Eq. (20) are set to a0 = b0 = 1.0 × 10−5. Other values for a0,
b0 in the range of [1.0 × 10−8, 1.0 × 10−4] were also employed
without a significant effect on the obtained sparsity patterns
or the predictive accuracy of the model.

Figure 6 depicts the z-coordinates of N = 500 training
data as well as those of 1527 test data which have been clas-
sified into the three modes based on the values of the dihedral
angles [see Fig. 2(b)]. In order to obtain the z-coordinates
of the test data, we made use of the mean µφ (x(i)) of the
inferred approximate posterior qφ as obtained after train-
ing. The resulting picture essentially provides the pre-images
of the atomistic configurations in the CV space. Interest-
ingly, similar atomistic configurations, i.e., belonging to one
of the three modes, α, β-1, β-2, are recognized by qφ (z |x) and
mapped to clusters in the identified CV space. β-1 configura-
tions are encoded by qφ (z |x) to regions with high probability
mass in pθ (z), i.e., CVs z close to the center of pθ (z) = N(0, I)

are assigned. This is in accordance with the reference Boltz-
mann distribution p(x), where β-1 is the most probable
conformation.

Various dimensionality reduction methods are designed
in order to keep similar x close in their embedding on the
lower-dimensional CV manifold, e.g., multidimensional scal-
ing30 or ISOMAP.33 In the presented scheme, the genera-
tive model learns that mapping similar x to similar z leads
to an expressive (in terms of the marginal likelihood) lower-
dimensional representation. This similarity is revealed by
inferring the approximate latent variable posterior qφ (z |x).
Therefore, the desired similarity mentioned in Ref. 13 between
configurations in the atomistic representation x and via qφ (z |x)
in the assigned CVs z is achieved.

In contrast to several other dimensionality reduction
techniques (e.g., isomap33 and diffusion maps38–41), which as
mentioned in the Introduction require large amounts of train-
ing data, e.g., N > 10 000,13,49 the proposed method can per-
form well in the small data regime, e.g., for N = 50 as shown

FIG. 13. Predicted radius of gyration with dim(z) = 2 for various sizes N of the training dataset. The MAP estimate indicated in red is compared to the reference (black)
solution. The latter is estimated by N = 10 000. The shaded area represents the 5%–95% credible interval, reflecting the induced epistemic uncertainty from the limited
amount of training data.
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Algorithm 4. Estimating credible intervals.

Input J the number of samples to be drawn, optimal values of θ = θMAP and φ = φMAP.

Compute Laplace’s approximationN(µL,SL = diag(σ2
L)) to the posterior p(θ |X) [Eq. (24)].

for j = 1 to J do

Draw a posterior sample: θj ∼N(µL,SL = diag(σ2
L)).

Obtain a predictive trajectory xj
1:T, given the parametrization θj utilizing Algorithm 2.

Estimate the observable â(θj) = 1
T

∑T
t=1 a(xj

t), given the trajectory xj
1:T.

end for

Estimate the desired quantiles with â(θ1:J).

in Fig. 7. The latter depicts the Ramachandran plot in terms of
the dihedral angles based on various amounts of training data
N and compares it with the one predicted by the trained model
on the same N as well as with the reference (obtained with
N = 10 000). We note that the trained model yields Ramachan-
dran plots that more closely resemble the reference as com-
pared to the ones computed by the training data alone. The
encoder, trained with N = 200, is capable of generating atom-
istic configurations leading to (φ, ψ) tuples which are not
included in the training data.

The ARD prior in Eq. (20) drives 58% of the parameters
θ to zero (as a threshold, we consider a parameter to be
inactive when its value drops below 1.0 × 10−4). In contrast,
all network parameters θ remain active while optimizing the
objective without the ARD prior. Apart from the qualitative
advantage, the sparsity-inducing prior provides a strong reg-
ularization in the presence of limited data and yields superior
predictive estimates. In addition to obtaining sparse solutions,
the ARD prior facilitates the identification of physically mean-
ingful latent representations for limited data (e.g., N = 50), as
shown in Fig. 8. Without the ARD prior, the data are encoded
in a rather small region of the latent space.

In Fig. 9, we attempt to provide insight into the phys-
ical meaning of the CVs z identified. In particular, we plot
the atomistic configurations x corresponding to various val-
ues of the first CV z1 while keeping z2 = 0. The conforma-
tional transition in predicted atomistic configurations can be
clearly recognized in the peptides of Fig. 9. We note that we
start on the left (z1 < 0) with α configurations, then move
towards β-1 (starting at z1 ≈ −1), and finally obtain β-2 con-
figurations. For illustration purposes, the predictions in Fig. 9
are based solely on the mean µθ (z) of the probabilistic decoder
pθ (x |z) = N(x; µθ (z),Sθ = diag(σ2

θ )). We note that for each
value of the CVs z several atomistic realizations x can be drawn
from pθ (x |z), as depicted in Fig. 10. This figure reveals the
characteristic and relevant movement of the backbone that
is captured by the predictive mean µθ (z) = fµθ (z). Fluctua-
tions of less relevant outer hydrogen atoms [see Figs. 10(b)–
10(d)] are recognized as noise of the decoder pθ (x |z) =
N

(
µ(z),Sθ = diag(σ2

θ )
)

denoted in Eq. (28). We also note that
the corresponding entries of σθ responsible for the outer

hydrogen atoms are five times larger compared to the remain-
ing atoms. The proposed model can therefore in an unsuper-
vised fashion identify the central role of the backbone coordi-
nates whereas this physical insight is pre-assumed in Refs. 8
and 68.

In order to gain further insight into the relation between
the dihedral angles φ, ψ and the discovered CVs z, we plot in
Figs. 11 and 12 the corresponding maps for various combina-
tions of z-values. While it is clear that the map is not always
bijective, the figures reveal the strong correlation between
the two sets of variables. It should also be noted that in con-
trast to the dihedral angles, the z value for a given atom-
istic configuration x is not unique but rather there is a whole
distribution as implied by qφ (z |x). For the aforementioned
plots, we computed the z from the mean of this density, i.e.,
µφ (x).

The trained model can also be employed in comput-
ing predictive estimates of observables ∫ a(x) ptarget(x) dx by

FIG. 14. Representation of the training data X with N = 3000 in the encoded
collective variable space. The inferred approximate posterior qφ (z |x) of the
latent CVs separates residues mostly belonging to the β conformations (mix-
ture of red and blue) and peptide configurations containing largely residues in
the α configuration (black). Here, the mean µφ (x) of the approximate posterior
qφ (z |x) = N(x; µφ (x),Sφ = diag(σ2

φ (x))) is depicted.
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making use of pθ (x) and samples drawn from it, as described in
Sec. II D. We illustrate this by computing the radius of gyration
(Rg)107,129 given as

aRg(x) =

√∑
p mp | |xp − xCOM | |2∑

p mp
. (38)

The sum in Eq. (38) considers all atoms p = 1, . . ., P of the pep-
tide, where mp and xp denote the mass and the coordinates of
each atom, respectively. xCOM denotes the center of mass of
the peptide. The histogram of aRg(x) reflects the distribution
of the size of the peptide and is correlated with the various
conformations.129

In the estimates that we depict in Fig. 13, we have also
employed the posterior approximation of the model parame-
ters θ obtained as described in Sec. II F in order to compute
credible intervals for the observable. These credible intervals
are estimated as described in Algorithm 4 utilizing J = 3000
samples. We observe that the model’s predictive confidence
increases with the size of the training data. This is reflected in
shrinking credible intervals in Fig. 13 for increasing N.

In summary for ALA-2, we note that the proposed
methodology for identifying CVs (Fig. 6) and predicting
observables (Figs. 7 and 13) works well with small size datasets,
e.g., N = {50, 200, 500}.

B. ALA-15

1. Simulation of ALA-15 and model specification
The following example considers a larger alanine peptide

with 15 residues, ALA-15 which consists of 162 atoms giving rise
to dim(x) = 486 with 480 DOF. The reference dataset X has
been obtained in a similar manner as specified in Sec. III A 1
with the only difference being that we utilize a replica-
exchange molecular dynamics130 algorithm with 21 temper-
ature replicas distributed according to Ti = T0eκ ·i (T0 = 270 K,
and κ = 0.04). This leads to an analogous simulation set-
ting as employed in Ref. 107. The datasets are obtained
as mentioned in the previous example. We consider here
N = {300, 3000, 5000}. Using the same model specifications
as in Sec. III A 2, we present next a summary of the obtained
results.

FIG. 15. Predicted configurations x for
decoding CVs indicated as red points on
the dashed line in the plot. Depicted con-
figurations have been produced by eval-
uating the mean µθ (z) of pθ (x |z). Mov-
ing along the path, we obtain atomistic
configurations x partially consisting of
the conformations α, β-1, and β-2 in the
ALA-15 peptide resulting in peptide sec-
ondary structures such as β-sheet (top
left), β-hairpin (top middle and right), and
α-helix (bottom row).
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FIG. 16. Predicted Ramachandran plots with dim(z) = 2 for various sizes N of the training dataset (first three plots from the left). Depicted predictions are MAP estimates
based on T = 10 000 samples. The plot on the right is the reference MD prediction with N = 10 000 configurations.

2. Results

For visualization purposes of the latent CV space, we
assumed dim(z) = 2 in the following, even though the pres-
ence of 15 residues each requiring a pair of dihedral angles
(φ, ψ) would potentially suggest a higher-dimensional rep-
resentation. However, when considering test cases with
dim(z) = {15, 30}, no significant differences were observed in
the predictive capabilities. This is in agreement with Ref. 131
where it is argued based on density functional theory calcula-
tions that not all dihedral angles are equally relevant. The (φ,
ψ) pairs within a peptide chain show high correlation. Multi-
layer neural networks provide the capability of transforming
independent CVs (as considered in this study) to correlated
ones by passing them through the subsequent network layers.
This explains the reasonable predictive quality of the model
using independent and low-dimensional CVs with dim(z) = 2.
Considering more expressive pθ (z) than the standard Gaussian
employed, could have accounted (in part) for such correla-
tions. In this example, by employing the ARD prior, only 43%
of the decoder parameters θ remained effective.

Figure 14 depicts the posterior means of the N = 3000
training data in the CV space z. Given that a peptide configu-
ration contains residues from different conformations labelled
here as α, β-1, and β-2 and residues in intermediate (φ, ψ)
states, we applied the following rule for labelling/coloring
each datapoint. The assigned color in Fig. 14 is a mixture
between the RGB colors: black (for α), blue (for β-1), and red
(for β-2). The mixture weights of the assigned color are pro-
portional to the number of residues belonging to the α (black),
β-1 (blue), and β-2 (red) conformations, normalized by the
total amount of residues which can be clearly assigned to α,
β-1, and β-2. Additionally, we visualize the amount of inter-
mediate (φ, ψ) states of the residues by the opacity of the
scatter points. The opacity reflects the amount of residues
which are clearly assigned to the α, β-1, and β-2 confor-
mations compared to the total amount of residues in the
peptide. For example, if all residues of a peptide configura-
tion correspond to a specific mode, the opacity is taken as
100%. If all residues are in non-classified intermediate states,
the opacity is set to the minimal value which is here taken
as 20%.

FIG. 17. Predicted radius of gyration with dim(z) = 2 for various sizes N of the training dataset. The MAP estimate indicated in red is compared to the reference (black)
solution. The latter is estimated by N = 10 000. The shaded area represents the 1%–99% credible interval, reflecting the induced epistemic uncertainty from the limited
amount of training data.
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We note that peptide configurations, in which the major-
ity of residues belong to β-1 (blue) or in the β-2 conformation
(red), are clearly separated in the CV space from datapoints
with residues predominantly in the α conformation (black).
Nevertheless, we observe that the encoder has difficulties sep-
arating blue (β-1) and red (β-2) datapoints. We remark though
that the related secondary structures132 resulting from the
assembly of residues in β-1 and β-2, such as the β-sheet and
β-hairpin, share a similar atomistic representation x which
explains the similarity in the CV space.

When one moves in the CV space z along the path indi-
cated by a red dashed line in Fig. 15 and reconstructs the cor-
responding x using the mean function of the decoder pθ (x |z),
we obtain atomistic configurations of the ALA-15 partially con-
sisting of the conformations α, β-1, and β-2 which correspond
to the aforementioned secondary structures, i.e., β-sheet (top
left), β-hairpin (top middle and right), and α-helix (bottom
row).

The ambiguity between β-1 and β-2 states is also reflected
in the predicted Ramachandran plot in Fig. 16. Nevertheless
properties, independent of the explicit separation of con-
figurations predominantly consisting of residues in β-1 and
β-2 states, are predicted accurately by the framework. This is
demonstrated with the computed radius of gyration in Fig. 17.
The MAP estimate is complemented by the credible inter-
vals which reflect the epistemic uncertainty and are able to
envelop the reference profile. As in the previous example,
the breadth of the credible intervals shrinks with increasing
training data N.

IV. CONCLUSIONS

We presented an unsupervised learning scheme for dis-
covering CVs of atomistic systems. We defined the CVs as
latent generators of the atomistic configurations and formu-
lated their identification as a Bayesian inference task. Infer-
ence of the posterior distribution of the latent CVs given
the fine-scale atomistic training data identifies a probabilis-
tic mapping from the space of atomistic configurations to
the latent space. This posterior distribution resembles a dic-
tionary translating atomistic configurations to the lower-
dimensional CV space which is inferred during the train-
ing procedure. Compared to other dimensionality reduction
methods, the proposed scheme is capable of performing well
with comparably heterogeneous and small datasets.

We presented the capabilities of the model for the test
case of an ALA-2 peptide (see Sec. III). When the dimen-
sionality of the CVs dim(z) was set to 2, the model discov-
ered variables that correlate strongly with the widely known
dihedral angles (φ, ψ). Other dimensionality reduction meth-
ods26,30,31,33,38,39,41 rely on an objective keeping small dis-
tances between configurations in the atomistic space also
small in the latent space. Rather than enforcing this require-
ment directly, the proposed framework identifies a lower-
dimensional representation that clusters configurations in the
CV space which show similarities in the atomistic space. The

Bayesian formulation presented allows for a rigorous quantifi-
cation of the unavoidable uncertainties and their propagation
in the predicted observables. The ARD prior chosen was shown
to lead to on average 45% less parameters compared to the
optimization without it.

We presented an approach for approximating the
intractable posterior of the decoding model parameters
[Eq. (24)] and provided an algorithm (Algorithm 4) for esti-
mating credible intervals. The uncertainty propagated to the
observables captures the parameter uncertainty of the decod-
ing neural network fµθ (z).

In addition to discovering CVs, the generative model
employed is able to predict atomistic configurations by sam-
pling the CV space with pθ (z) and mapping the CVs probabilis-
tically via pθ (x |z) to full atomistic configurations. We showed
that the predictive mapping pθ (x |z) recognizes essential back-
bone behavior of the peptide while it models fluctuations of
the outer hydrogen atoms with the noise of pθ (x |z) (see Fig. 10).
We use the model for predicting observables and quantifying
the uncertainty arising from limited training data.

We emphasize that the whole work was based on data
represented by Cartesian coordinates x of all the atoms of the
ALA-2 (dim(x) = 66, and 60 DOF adjusted by removing rigid-
body motion) and ALA-15 (dim(x) = 486, and 480 DOF adjusted
by removing rigid-body motion) peptides. Considering a pre-
processed dataset, e.g., by considering solely coordinates of
the backbone atoms, heavy atom positions, or a representa-
tion by dihedral angles, assumes the availability of tremendous
physical insight. The aim of this work was to reveal CVs with
physicochemical meaning and the prediction of observables of
complex systems without using any domain-specific physical
notion.

Besides the framework proposed, generative adversar-
ial networks (GANs)133 and their Bayesian reformulation in
Ref. 134 open an additional promising avenue in the context
of CV discovery and enhanced sampling of atomistic systems.
GANs are accompanied by a two player (generator and dis-
criminator) min-max objective which poses known difficul-
ties in training the model. The training of GANs is not as
robust as the VAE employed here, and Bayesian formulations
are not well studied. In addition, one needs to address the
mode collapse issue (see Ref. 135) which is critical for atomistic
systems.

Future work involves the use of the CVs discovered in
the context of enhanced sampling techniques that can lead
to an accelerated exploration of the configurational space. In
addition to identifying good CVs, a crucial step for enhanced
sampling methods is the biasing potential for lifting deep free-
energy wells. In contrast to the ideas, e.g., presented in Refs. 8,
9, and 136, we would advocate a formulation where the bias-
ing potential is based on the lower-dimensional pre-image
of the currently visited free-energy surface. To this end, we
envision using the posterior distribution qφ (z |x) to construct
a locally optimal biasing potential defined in the CV space
which gets updated on the fly as the simulations explore the
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configuration space. The biasing potential can be transformed
by the probabilistic mapping of the generative model pθ (x |z)
to the atomistic description as follows:

Ux(i)

bias(x) ∝ − log
∫

MCV

pθ (x |z)qφ (z |x(i)) dz. (39)

Equation (39) is differentiable with respect to atomistic coor-
dinates. Subtracting it from the atomistic potential could
accelerate the simulation by “filling-in” the deep free-energy
wells.
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Appendix E

Embedded-physics machine
learning for coarse-graining and
collective variable discovery
without data

E.1 Relation with Expectation-Propagation

This section emphasizes the relationship of hierarchical variational models with
expectation-propagation (EP) [557].

The following is not directly relevant to optimization of the objective Equation
(6.7), but it shows the existence of an upper bound of the entropy term−Eq(x) [log q(x)].
Similar to Equation (6.9) one denotes,

−Eq(x) [log q(x)] = −Eq(x) [log q(x)− DKL (q(z|x)||q(z|x))]
≤ Eq(x) [− log q(x) + DKL (r(z|x)||q(z|x))]
= Eq(x)

[
Er(z|x) [− log q(x)− log q(z|x) + log r(z|x)]

]
= Eq(x)

[
Er(z|x)

[
− log q(x)− log

q(x|z)q(z)
q(x)

+ log r(z|x)
]]

= Eq(x)

[
Er(z|x) [− log q(x|z)− log q(z) + log r(z|x)]

]
. (E.1)

The bound in Equation (E.1) is tractable if sampling from q(x) and r(z|x) is feasible.
Both bounds (Eqs. E.1 and 6.9) show similarities to the derivation of EP [557] and
variational Bayesian inference [416]. However, note that the lower bound in Equa-
tion (6.11) is connected to the objective in EP, although EP only minimizes DKL(q‖r)
locally. The bound derived with q(x) results in a tighter bound compared with vari-
ational autoencoders with q(x|z), as H[q(x)] ≥H[q(x|z)] (for details, see [558]).
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E.2 Estimating the relative increase of the KL divergence

The relative increase of the KL divergence induced by decreasing the temperature is
denoted as in Equation (6.36), with

ck =
log(Z(βk+1))− log(Z(βk)) + (βk+1 − βk) 〈U(x)〉q(x,z)

log Z(βk) + βk 〈U(x)〉q(x,z) − 〈log r(z|x)〉q(x,z) −H(q(x, z))
.

The following addresses the estimation of log(Z(βk+1))− log(Z(βk)) with ∆βk =

βk+1 − βk:

Z(βk + ∆βk) =
∫

e−(βk+∆βk)U(x)dx (E.2)

=
∫ e−(βk+∆βk)U(x)

e−βkU(x)

Z(βk)

e−βkU(x)

Z(βk)
dx

= Z(βk)
∫

e−∆βkU(x)ptarget(x; βk) dx

= Z(βk)
∫

e−∆βkU(x) e−βkU(x) r(z|x)
q(x|z) q(z)

q(x, z) dx dz.

We are interested in log(Z(βi+k))− log(Z(βk)). Therefore, we write:

log(Z(βi+1))− log(Z(βi)) = log
∫

e−∆βU(x) e−βiU(x) r(z|x)
q(x|z) q(z)︸ ︷︷ ︸

w

q(x, z) dx dz (E.3)

≈ log
N

∑
i=1

e−∆βU(x(i))W(i).

Equation (E.3) depicts a noisy Monte Carlo estimator for log(Z(βk+1))− log(Z(βk))

based on importance sampling [559] with the following normalized weights:

W(i) =
w(i)

∑ w(i)
with w(i) ∝

e−βiU(x) r(z|x)
q(x|z) q(z)

. (E.4)

As e−βiU(x)r(z|x) may be small for samples (x(i), z(i)) ∼ q(x, z), we use instead
log w̄(i) with log w̄(i) = log w(i) − a and a = max{log w(i)} to avoid numerical is-
sues.

Whereas above we showed an approximate estimator for log(Z(βk+1))− log(Z(βk)),
the following addresses log(Z(βk)). To estimate the relative increase in the KL di-
vergence, one requires the normalization constant as mentioned in Equation (6.36).
Multistage sampling [560] provides a way to approximate Z(βi), given all previous
Z(βk) with k < i and βi > βi−1:

Z(βi)

Z(0)
=

Z(β1)

Z(β0)
· Z(β2)

Z(β1)
· · · Z(βi−1)

Z(βi−2)
. (E.5)
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The ratios Z(βk−1)
Z(βk−2)

are given by Equation (E.3). The remaining component to be esti-
mated is Z(0), as we utilize the expression from Equation (E.3) to estimate the ratios
of normalization factors. To avoid learning parametrizations θ yielding almost uni-
form q(x) on an infinite domain, which occurs in the limit when β = 0, we define
the following auxiliary potential to restrict the domain:

Uaux(x) =


U(x), if x ∈ [−b, b]dim(x)

− u
β x, x < −b

u
β x, x > b,

(E.6)

with u = 10× 102. The above extension does not influence the potential energy U(x)
at relevant temperatures.

The initial Z(β0) is computed with importance sampling. This is done only once
upon convergence of (θ, φ) for β0:

Z(β0) =
∫

e−β0U(x) dx (E.7)

=
∫

e−β0U(x) r(z|x) dx dz

=
∫ e−β0U(x) r(z|x)

q(x, z)︸ ︷︷ ︸
w

q(x, z) dx dz.

With samples (x(i), z(i)) ∼ q(x, z), we obtain the following unnormalized weights:

w(i) =
e−β0U(x(i)) r(z(i)|x(i))

q(x(i), z(i))
, (E.8)

or log w(i) = −β0U(x(i)) + log r(z(i)|x(i))− log q(x(i), z(i)). Then,

log Z(β0) = − log N + log
N

∑
i=1

elog w(i)−c + c, (E.9)

with c = max(log w(i)).

E.3 ALA-2 coordinate representation

We show the structure of the ALA-2 petpide in Figure E.1. The numbers in the
circles, which depict the involved atoms of ALA-2, correspond to the order in which
we assemble block-wise the Cartesian coordinates (xi, yi, zi) of atom i to

x = (x1, y1, z1, x2, y2, . . . , x22, y22, z22)
T,

where i is the atom number as depicted in Figure E.1. For removing rigid-body mo-
tion, we fix the Cartesian coordinates (x6, y6, z6) of atom 6, (x9, y9) of atom 9, and
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FIGURE E.1: ALA-2 structure with numbered atoms as used for de-
composing x.

(y15) of atom 15. The employed PDB structure file is available online at https://
github.com/cics-nd/predictive-cvs/blob/master/data_peptide/ala-2/ala2_adopted.

pdb.

E.4 Simulation of ALA-2

The procedure for generating a reference trajectory for computing reference observ-
ables of ALA-2 is identical to that employed in [415], whereas the data generation
approach relies on [556]. The utilized interaction force field is AMBER ff96 [337–
339], resolved by an implicit water model based on the generalized Born model [551,
552]. Incorporating an explicit water model would, obviously, provide trajectories
that would yield observables closer to the experimental reference. An Andersen ther-
mostat is used to maintain fluctuations around the desired temperature T = 330 K.
All reference simulations are carried out using Gromacs [316–322]. The time step
is ∆t = 1 fs, with a preceding equilibration phase of 50 ns. Thereafter, a trajectory
snapshot is taken every 10 ps. Rigid-body motions have been removed from the
Cartesian coordinates.

E.5 Observable estimation for ALA-2

We are interested in estimating observables based on predictive models, in contrast
to those obtained through reference MD simulations. In general, observables are
evaluated as ensemble (MC) or phase (MD) averages,

∫
a(x)ptarget(x) dx, by making

use of qθ(x) and samples drawn by ancestral sampling. We illustrate the radius of
gyration (Rg) [68, 556], given as:

aRg(x) =

√
∑p mp‖xp − xCOM‖2

∑p mp
. (E.10)

https://github.com/cics-nd/predictive-cvs/blob/master/data_peptide/ala-2/ala2_adopted.pdb
https://github.com/cics-nd/predictive-cvs/blob/master/data_peptide/ala-2/ala2_adopted.pdb
https://github.com/cics-nd/predictive-cvs/blob/master/data_peptide/ala-2/ala2_adopted.pdb
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The sum in Equation (E.10) considers all system atoms p = 1, . . . , P, with the atom
mass mp and Cartesian coordinate xp of each atom. The center of mass of the peptide
is denoted by xCOM. A histogram of aRg(x) reflects the statistics of the peptide’s
average size, which characterize its various conformations [68].

E.6 Gradient normalization

During optimization of the objective in the context of atomistic systems, we en-
counter significant forces, F(x). These differ in magnitude owing to sampling atom-
istic realizations, which induce, e.g., relatively small distances between bonded atoms.
This leads to extreme force components. Gradient normalization [561, 562] circum-
vents disruption of the current set of learned parameters (θ, φ) via a single com-
ponent attached with extreme magnitudes, owing to, e.g., short bonded distances.
Once training proceeds, and predicted atomistic realizations are closer to reasonable
ones, the gradient normalization becomes redundant, affecting only gradients in ex-
treme settings where the absolute values of F(x) ≥ 1× 1015. After an initial learning
phase, such extreme magnitudes do not occur, and thus the normalization does not
affect or distort the physics induced by evaluating the force field F(x).

Given a batch of I samples
{

x(i)
}I

i=1
obtained from qθ(x), we estimate the gradi-

ent of the objective, gi(x(i)) and calculate its `-2 norm:

li = ‖gi‖2. (E.11)

The average gradient norm is l̄ = 1/I ∑I
i=1 li, and we allow a maximal gradient norm

based on the mean with lmax = κ̇̄l, κ = 3.0. κ was determined by an empirical study.
Those gradients with li > lmax are normalized such that

gi
n =

lmax

li
gi. (E.12)

As mentioned earlier, realistic atomistic systems at relevant temperatures are not
exposed to `-2 norms of gradients differing more as twice as compared with the gra-
dient with the lowest `-2 norm. Thus, the gradient normalization is inactive when
learning realistic atomistic configurations.
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Appendix F

On-the-fly coarse-graining

We are interested in simulating the following distribution, which exhibits a complex
inter-atomic potential Uf(x) describing the interactions between fine-scale degrees
of freedom x:

ptarget(x) =
e−βUf(x)

Z(β)
=

π(x)
Z(β)

, (F.1)

where β is the inverse temperature and Z(β) is the partition function.

F.1 Methodology

The following describes an approach that combines actively learning a biasing po-
tential, enhancing the exploration of the configurational space, and making predic-
tions for observables. For this purpose, we introduce a distribution that includes
the reference fine-scale interaction potential Uf(x) and a predictive distribution, e.g.,
q(x) =

∫
q(x|z)q(z) dz:

pbias(x) =
1

Zp
e−βUf(x)−log q(x). (F.2)

The distribution pbias(x) becomes uniform when q(x) = ptarget(x). Therefore, it min-
imizes the KL-divergence from a uniform distribution to pbias(x) with respect to q,
a valid objective for learning a predictive distribution, while enhancing the explo-
ration of the configurational space. One could furthermore employ a sequence of
objectives guided by an auxiliary distribution pn(x), which could be close to a refer-
ence configuration xref defined by a Gaussian pn(x) = N (xref, σ2

n I):

min
q

DKL,n (pn(x)‖pbias(x)) . (F.3)

For the predictive component q(x), we employ the usual probabilistic model as de-
veloped in this work, with

q(x|θ) =
∫

q(x|z, θcf)q(z|θc) dz (F.4)

parametrized by θ, where z denotes the latent lower-dimensional CG variables that
gives rise to the observations x.
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We introduce the objectives Hn(θ) = DKL,n (pn(x)‖pbias(x)) as follows:

Hn(θ) = DKL,n (pn(x)‖pbias(x)) , (F.5)

min
θ

Hn(θ) = 〈log q(x|θ)〉pn(x) + log Z(θ).

We employ gradient-based stochastic optimization to minimize the objective Hn(θ)

(or a sequence of it). The gradient with respect to θ is as follows:

∂Hn

∂θ
=

〈〈
∂ log q(x, z|θ)

∂θ

〉
q(z|x,θcf)

〉
pn(x)

−
〈〈

∂ log q(x, z|θ)
∂θ

〉
q(z|x,θcf)

〉
pbias(x)

. (F.6)

F.2 Numerical illustration

The following demonstrates the basic capabilities of the proposed approach using a
target distribution that is a mixture of two Gaussians, defined as:

ptarget(x) = a1N (µ1, σ2
1) + a2N (µ2, σ2

2). (F.7)

We employ the following setting: a1 = a2 = 0.5, µ1 = (−0.5, 0.5)T, µ2 = (0.5, −0.5)T

and σ2
1 = (1.0× 10−3, 5.0× 10−4)T, σ2

2 = (3.0× 10−3, 1.0× 10−3)T. Random walk
Markov chain Monte Carlo approaches usually become trapped in one of the de-
picted modes for the previously defined reference distribution. The resulting distri-
bution is depicted with − log ptarget(x) in Figure F.1.

For q(x|θ), we employ the following model, inspired by a mixture of factor ana-
lyzers [490]:

q(x|θ) =
∫

q(x|z, γ, θcf)p(z|θc)q(γ) dz dγ. (F.8)

The distributions are specified with:

• J probabilistic coarse-to-fine mapping distributions,

q(x|z, θ
j
cf, γj = 1) = N

(
µj + Wjz, Sj

)
, (F.9)

with θ
j
cf =

{
µj, Wj, Sj

}
where Sj = diag(σ2

1 , . . . , σ2
nf
).

• The distribution of the CG variables is independent of γ,

q(z) = N (0, I). (F.10)

• The distribution governing the J mixture components γ, where we employ a
1-of-J representation with γj ∈ {0, 1} and ∑J

j=1 = 1, is:

q(γ) =
J

∏
j=1

α
γj
j , (F.11)

with the mixing coefficient αj of the j-th component.
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FIGURE F.1: Potential energy surface of the target distribution
− log ptarget(x) (log-scale).

The above model specifications yield the predictive distribution:

q(x|θ) =
J

∑
j=1

αjq(x|γj = 1) =
J

∑
j=1

αjN (µj, WjWT
j + Sj). (F.12)

We choose dim(z) = 2 and start the training with σ0 = 0.02, which increases linearly.
We optimize Hn(θ) initially with one active component in the mixture model and
activate the second component upon convergence of Hn. The training process is
visualized in Figure F.2 and we show resulting potential energy surface of pbias in
Figure F.3.
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FIGURE F.2: Properties of the model components q(x|z, θ
j
cf, γj) and

corresponding mixture weights αj during training, compared with
the target (indicated by dashed lines).
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(a) Iteration 20. (b) Iteration 730.

(c) Iteration 1500. (d) Iteration 1700.

FIGURE F.3: Implied potential energy by pbias during the training
process. As objective we seek to obtain pbias(x) such that pbias(x) is

close to a uniform distribution, then q(x|θ) = ptarget(x).
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