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Abstract

We present a novel learning framework that consistently embeds underlying physics
while bypassing a significant drawback of most modern, data-driven coarse-grained
approaches in the context of molecular dynamics (MD), i.e., the availability of big
data. The generation of a sufficiently large training dataset poses a computationally
demanding task, while complete coverage of the atomistic configuration space is not
guaranteed. As a result, the explorative capabilities of data-driven coarse-grained
models are limited and may yield biased “predictive” tools. We propose a novel
objective based on reverse Kullback–Leibler divergence that fully incorporates the
available physics in the form of the atomistic force field. Rather than separating
model learning from the data-generation procedure - the latter relies on simulating
atomistic motions governed by force fields - we query the atomistic force field
at sample configurations proposed by the predictive coarse-grained model. Thus,
learning relies on the evaluation of the force field but does not require any MD
simulation. The resulting generative coarse-grained model serves as an efficient
surrogate model for predicting atomistic configurations and estimating relevant
observables. Beyond obtaining a predictive coarse-grained model, we demonstrate
that in the discovered lower-dimensional representation, the collective variables
(CVs) are related to physicochemical properties, which are essential for gaining
understanding of unexplored complex systems. We demonstrate the algorithmic
advances in terms of predictive ability and the physical meaning of the revealed
CVs for a bimodal potential energy function and the alanine dipeptide.

Boltzmann densities, which are ensemble representations of equilibrium atomistic systems, are
usually explored by molecular dynamics (MD) [1] or Monte Carlo-based (MC) techniques [2].
These versatile and general simulation techniques asymptotically guarantee unbiased estimates of
observables [3]. However, these simulation techniques become computationally impractical in
cases where the atomistic interaction potential exhibits several distinct minima or wells. Such
complex potentials imply multimodal Boltzmann densities. Escaping such a well is rare and requires
overcoming high free-energy barriers, resulting in impractically long simulation times or biased
trajectories [4].
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Key to exploring such multimodal Boltzmann densities is the recognition of appropriate slow coordi-
nates or collective variables (CVs) that exhibit sensitivity in transition regions between modes. This
requires tremendous physicochemical insight, which is not available per se. CVs, which provide an
effective lower-dimensional description of high-dimensional atomistic systems, are key to accelerat-
ing the exploration of multimodal densities by biasing the dynamics to escape deep free-energy wells
[5].

Identifying expressive CVs governing major conformational changes in the absence of physical
insight requires data-driven strategies. However, in many cases, the identification of CVs requires a
dense sample of the target Boltzmann distribution, as well as unbiased simulation trajectories. This
creates a contradiction, as it is computationally impractical to obtain unbiased trajectories in the
presence of multiple modes [6], restricting the potential use-cases of such approaches. Few nonlinear
dimensionality reduction methods coping with low data provide CVs that are not differentiable with
respect to their atomistic counterparts [7–9]; however, this is required for biasing the dynamics
[10–21]. Deep learning approaches providing flexible and efficiently differentiable functions have
also influenced research on the efficient exploration of multimodal Boltzmann distributions. However,
these build on previously acquired reference data and do not account directly for the interaction
potential that actually drives the MD or MC simulation.

This work provides a novel and fundamentally different perspective on data-driven deep learning
approaches. Instead of relying on two separate process, acquiring data and then employing statistical
learning of a model, we synthesize and embed physics, i.e., the Boltzmann density, with a machine
learning objective. The advocated learning methodology proposes (atomistic) configurations to which
the model is attracted to learn from the potential energy and associated interatomic forces. The
proposed machine learning algorithm does not require any simulation of the Boltzmann density
but only queries the physical model, i.e., the potential and forces, to gain relevant information by
evaluating rather than simulating the Boltzmann density. The proposed learning algorithm includes a
versatile nonlinear dimensionality-reduction routine, which simultaneously discovers relevant CVs
while learning the Boltzmann density. We demonstrate the procedure using a double well potential
and the alanine dipeptide.

The present work differs clearly from recent developments on Boltzmann generators [22] that rely on
invertible neural networks such as RealNVP [23] and NICE [24]. As it employs invertible neural
networks, the dimensionality of the latent generator must equal the dimensionality of the atomistic
configuration, which detains a consistent dimensionality reduction. Generated atomistic realizations
of the employed model in [22] do not reflect the statistics of the reference Boltzmann distribution
and serve instead as an input to a subsequent re-weighting importance sampling step. However,
importance sampling is difficult to monitor if the variance in the importance weights is low, implying
a large effective sample size, when none of the proposed realizations yield relatively high probabilities
as evaluated by the target density [25]. Furthermore, a good guess of CVs is provided in Boltzmann
generators, which depict physical insights that may not be available. By contrast, the proposed
approach (similar double well example) reveals the effective CVs and also provides a generator to
produce samples that yield the correct statistics of the target.

In the following Section 1, we develop the proposed learning approach based on KL divergence
minimization and derive a tractable upper bound based on hierarchical variational models [26]. We
discuss the required gradient computation and provide a physically interpretable underpinning of the
components involved. After introducing a general model parametrization, we provide an adaptive
tempering scheme facilitating a robust machine learning procedure at the end of Section 1. The
proposed physics-embedding learning procedure for revealing CVs and obtaining a coarse-grained
(CG) model is numerically validated in Section 2 with a double well potential and the alanine
dipeptide. We close this paper in Section 3, summarizing the main findings of this work and outlining
simple but effective further extensions and research directions. These include the generalization of
the obtained predictive distribution for predictive purposes at any temperature.

1 Methodology

After introducing the notation in Section 1.1, we describe the general proposed framework in Section
1.2. A tractable optimization objective is provided in Section 1.3. We compare the proposed approach
with data-driven objectives in Section 1.4. Relevant model specifications and gradient computations
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for training are discussed in Section 1.5, and we close with some notes on the actual training procedure
in Section 1.6.

1.1 Equilibrium statistical mechanics

In equilibrium statistical mechanics, we seek to estimate ensemble averages of observables a(x) with
respect to the Boltzmann density,

〈a〉ptarget(x;β) =

∫
Mf

a(x)ptarget(x;β) dx. (1)

We denote the Boltzmann distribution, for which we aim to learn an efficient approximation, by
ptarget(x;β):

ptarget(x) =
1

Z(β)
e−βU(x)︸ ︷︷ ︸
π(x;β)

(2)

=
π(x;β)

Z(β)
.

In Equation 2, Z(β) =
∫
e−βU(x)dx is the partition function or normalization constant, and β = 1

kBT

is the reciprocal or inverse temperature with the Boltzmann constant kB and the temperature T . The
interatomic potential U(x) depends on generalized atomistic coordinates denoted by x ∈Mf ⊂ Rnf ,
with nf = dim(x). In equilibrium statistical mechanics, we are usually interested in phase averages
at distinct constant temperatures; however, we will also demonstrate how to utilize the temperature
to introduce an auxiliary sequence of target distributions to facilitate learning the actual target
distribution. The auxiliary sequence stabilizes the parameter learning inspired by annealing [27, 28]
and adaptive sequential MC [29].

1.2 Coarse-graining through probabilistic generative models

Data-driven coarse-graining methodologies are based on a limited set of N realizations obtained from
the target density ptarget(x). The realizations x(i) are produced by drawing samples from ptarget(x):
x(i) ∼ ptarget(x) with Markov Chain MC (MCMC) methods [30, 31] and/or, especially in the context
of biochemical atomistic systems, by MD simulations [32, 33]. Both methodologies yield a dataset
xDN = {x(i)}Ni=1, which approximates the target distribution with

ptarget(x) ≈ p̃(x)

∝
N∏
i=1

δ(x(i) − x). (3)

The above approximation, given independent and identically distributed samples, may sufficiently
resemble simple systems. However, atomistic many-body systems exhibit higher-order and long-
range interactions [34, 35] involving multiple free energy modes separated by high barriers [36,
37]. Therefore, the collection of sufficient data becomes an insurmountable task: a protein folding
process may take microseconds versus a time discretization of femtoseconds [38]. Given limited
computational power, the relevant conformations and transitions are not guaranteed to be reflected by
the reference simulation [39].

The quality of data-driven learning approaches depends strongly on the quality of the available set of
reference data xDN . If, e.g., in the case of peptides, certain conformations are missed, it is an almost
insurmountable challenge to obtain a data-driven model exploring such missed configurations [40,
41]. Enhanced sampling methods [10–21] can support the exploration of the configuration space,
while the efficiency crucially depends on the quality of utilized CVs [42, 43].

Instead of relying on reference data, which may be a distorted representation of ptarget(x), or gradually
exploring the configuration space by enhanced sampling, we present a variational approach that learns
the target distribution ptarget(x) by querying the unnormalized distribution π(x) or the corresponding
potential energy U(x) (see Equation 2).

We are first interested in identifying latent CVs z (z ∈Mc ⊂ Rnc ) depending on the fully atomistic
picture x, which encode physically relevant characteristics (e.g., coordinates along transition regions
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between conformations) and provide insight into the unknown atomistic system we seek to explore.
Second, we seek to identify a CG model expressed in terms of the latent CVs z that is predictive
but nevertheless facilitates reasoning about all-atom coordinates x [44]. The obtained CG model
is expected to serve as an approximation to ptarget(x) to enable the efficient computation of the
expectations of observables (Equation 1) and most importantly to capture relevant configurations
in the free energy landscape that were inaccessible by brute-force MD or MCMC approaches [45].
Fulfilling the latter requirement also implies capturing statistics of ptarget(x).

The CVs z serve as latent generators of the higher-dimensional generalized coordinates x, where we
seek dim(z)� dim(x). This generative process is expressed with two components,

(i) the conditional density qθcf(x|z), parametrized by θcf,
(ii) and the density over the latent CVs qθc(z).

Combining both densities gives the following joint:

qθ(x, z) = qθcf(x|z)qθc(z). (4)

Assuming we have obtained the optimal parameters θopt after a training process based on an objective,
which we will discuss later in this section, we can utilize the model for predictive purposes. This can
be done by ancestral sampling [25], i.e., first draw z(i) ∼ qθopt(z) and second x(i) ∼ qθopt(x|z(i)).

For obtaining optimal parameters θ, many methods rely on minimizing a distance from the target
distribution ptarget(x) to the marginal distribution qθ(x), which is given by:

qθ(x) =

∫
qθ(x, z) dz =

∫
qθcf(x|z)qθc(z) dz. (5)

A commonly employed metric expressing the deviation between two densities is the Kullback–Leibler
(KL) divergence, which belongs to the family of α-divergences [46–48]:

DKL (ptarget(x)‖qθ(x)) = −
∫
ptarget(x) log

qθ(x)

ptarget(x)
dx

= −〈log qθ(x)〉ptarget(x) + 〈log ptarget(x)〉
ptarget(x)︸ ︷︷ ︸

−H(ptarget)

. (6)

Minimizing Equation 6 with respect to θ leads to qθ(x) being closer to ptarget(x). However, in
practice, the expectations in Equation 6 are intractable:

(i) the marginal qθ(x) requires the integration with respect to z which is intractable itself and
(ii) the involved expectation with respect to ptarget(x), 〈·〉ptarget(x) is analytically intractable since

the normalization constant of ptarget(x) is unavailable (which would require solving an
integral with respect to x).

Considering the above challenges, the latter could be addressed by approximating ptarget(x) with
data or samples xDN and thus approximating the corresponding expectations with MC estimators.
However, as we deal with complex multimodal Boltzmann densities ptarget(x), the data generating
process (MCMC or MD) may miss relevant modes. By employing a biased set of samples or data
not approximating ptarget(x) [49], we learn a biased estimator not approximating ptarget(x). The
generation of the training dataset is thus decoupled from the learning process.

To circumvent the data-generating process and thus sampling from ptarget(x), we propose employing
the other extreme of the family of α-divergences (as compared to Equation 6), the reverse KL
divergence:

DKL (qθ(x)‖ptarget(x)) = −
∫
qθ(x) log

ptarget(x)

qθ(x)
dx

= Eqθ(x) [log qθ(x)]︸ ︷︷ ︸
−H(q(x))

−Eqθ(x) [log ptarget(x)]

= −Eqθ(x) [log ptarget(x)]−H(q(x)). (7)
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Minimizing Equation 7 with respect to θ requires maximizing the log-likelihood log ptarget(x) assessed
under qθ(x) (first component in Equation 7), and the maximization of the entropy of qθ(x), H(q(x))
(second component in Equation 7). Minimizing the reverse KL divergence balances the two terms, as
maximizing only the log-likelihood log ptarget(x) assessed under qθ(x) would result in a degenerate
case where qθ(x) would become a Dirac-delta placed at the (global) maximum of ptarget(x) obtained
at the (global) minimum of U(x). The second component implies a regularization favoring a
parametrization θ such that the entropy of qθ(x) is maximized.

1.3 Inference and learning

In what follows, we use the negative of the KL divergence in Equation 7 to be maximized, which
we denote with L for the sake of comparability with other learning approaches [50, 51]. At the end
of this section, we compare the presented methodology with data-driven approaches relying on the
forward KL divergence [51–53] and especially those addressing coarse-graining problems [54–57].

The objective to be maxmized is

L(θ) = Eqθ(x) [log ptarget(x)− log qθ(x)] , (8)

where we can draw samples from qθ(x) as we can wisely select tractable hierarchical components
composing to qθ(x). The optimization of the first component in L(θ) relating to the log-likelihood is
tractable as the normalization of ptarget(x) does not depend on the parameters θ and thus being able
to evaluate π(x) or U(x) suffices. However, the entropy term is not tractable ad-hoc as it involves
the marginal qθ(x) =

∫
qθcf(x|z)qθc(z) dz, posing in most cases an intractable or least cumbersome

task.

Therefore, we seek to construct a tractable lower bound on H(x) as presented in [26] by introducing
an auxiliary density rφ(z|x) parametrized by φ and write:

−Eq(x) [log q(x)] = −Eq(x)

log q(x) +DKL (q(z|x)‖q(z|x))︸ ︷︷ ︸
=0


≥ −Eq(x) [log q(x) +DKL (q(z|x)‖rφ(z|x))]

= −Eq(x)

[
Eq(z|x) [log q(x) + log q(z|x)− log rφ(z|x)]

]
. (9)

Adding DKL (q(z|x)‖q(z|x)) in the first line of Equation 9 has no influence as the term is equal
to zero. It involves the posterior distribution over the latent variables z, q(z|x) = q(x,z)

q(x) , which is
intractable. By utilizing an auxiliary distribution rφ(z|x), the equality becomes an inequality as a
consequence of DKL (q(z|x)‖rφ(z|x)) ≥ 0 for rφ(z|x) deviating from q(z|x). Replacing the exact
log-posterior log q(z|x) by

log q(z|x) = log q(z) + log q(x|z)− log q(x), (10)

it follows that

−Eq(x) [log q(x)] ≥− Eq(x)

[
Eq(z|x)

[
log q(x) + log q(z) + log q(x|z)

− log q(x) − log rφ(z|x)
]]

=− Eq(x)

[
Eq(z|x) [log q(z) + log q(x|z)− log rφ(z|x)]

]
. (11)

Rewriting the expectation Eq(x)

[
Eq(z|x) [·]

]
as Eq(x,z) [·], Equation 11 depicts a tractable lower

bound on the entropy term. Maximizing the lower bound in Equation 11 with respect to φ min-
imizes DKL (q(z|x)‖r(z|x;φ)) and thus tightens the bound on the entropy term. As mentioned
earlier, the optimum4 is obtained when we identify the exact posterior of the latent CVs q(z|x)
with r(z|x;φopt) = q(z|x), thus DKL (q(z|x)‖r(z|x;φopt)) = 0. Utilizing the obtained bound in
Equation 11, the objective L(φ,θ) from Equation 8 becomes:

L(φ,θ) = Eq(x,z;θ) [log ptarget(x)− log qθc(z)− log qθcf(x|z) + log rφ(z|x)] . (12)

4The optimum with respect to rφ(z|x) and thus φ that tightens the lower bound.
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The following shows the connection between the obtained objective and the KL divergence defined
between the joint q(x|z)q(z) and ptarget(x)r(z|x) acting on the extended probability space:

L(φ,θ) = Eq(x,z;θ) [log ptarget(x)− log q(z)− log q(x|z) + log rφ(z|x)]

= Eq(x,z;θ)

[
log

ptarget(x)rφ(z|x)

qθcf(x|z)qθc(z)

]
(13)

= −DKL (qθcf(x|z)qθc(z)‖ptarget(x)rφ(z|x)) . (14)

Based on Equation 13 and Equation 14, we show how the objective separates into two KL divergence
terms:

DKL (q(x|z)q(z)‖ptarget(x)r(z|x)) = −Eq(z)

[
Eq(x|z)

[
log

ptarget(x)rφ(z|x)

q(z|x)q(x)

]]
= −Eq(x)

[
log

ptarget(x)

q(x)

]
− Eq(z)q(x|z)

[
log

rφ(z|x)

q(z|x)

]
= DKL (q(x)‖ptarget(x)) +DKL (q(z|x)‖rφ(z|x))

≥ DKL (q(x)‖ptarget(x)) (15)

As mentioned earlier, the lower bound on L(φ,θ) or upper bound on
DKL (qθcf(x|z)qθc(z)‖ptarget(x)r(z|x)) becomes tight when r(z|x;φopt) = q(z|x), which
is Equation 15. Suboptimal φ imply bounds on the objective owing to the positivity of
DKL (q(z|x)‖rφ(z|x)) ≥ 0.

The advantage of the proposed method for identifying CVs and learning a predictive coarse-graining
model becomes clearer when we directly utilize the reference potential energy U(x) (which we
assume to be available in this paper). The objective L(φ,θ), which is the negative KL divergence
defined by the joint distributions, is subject to maximization with respect to the parameters θ and φ:

L(φ,θ) = −DKL (qθc(z)qθcf(x|z)‖ptarget(x)rφ(z|x))

= 〈log ptarget(x)〉
qθ(x,z)

+

〈
log

rφ(z|x)

qθc(z)qθcf(x|z)

〉
qθ(z,x)

= −β 〈U(x)〉qθ(x,z) +

〈
log

rφ(z|x)

qθc(z)qθcf(x|z)

〉
qθ(z,x)

(16)

Maximizing Equation 16 solely involves expectations with respect to the generative model, from
which it is easy to draw samples from. Explicitly there are no expectations with respect to the target
density ptarget(x), which would require an approximation with data. Instead of data, the target density
ptarget(x) contributes to the learning of the parameters (φ,θ) through the interatomic potential energy
U(x) assessed for samples of the generative model q(x|z)q(z). Note that the normalization constant
of ptarget(x) is independent of φ and θ and has been omitted in Equation 16. We are aware that the
method requires a potential energy function U(x), which can be assessed at x. This is always the
case for systems where we can set up MD or MCMC simulations, although we do circumvent the
need to simulate a trajectory or draw reference samples by directly incorporating the available physics
expressed by the potential energy.

1.4 Reverse or forward KL divergence?

In the following, we point out commonalities and differences between the proposed approach relying
on the reverse KL divergence as introduced in Equation 7 and the forward KL divergence (Equation
6). The latter has been successfully employed for the development of coarse-graining methodologies
[54–56] and with a focus on CV discovery in combination with predictive coarse-graining in [57].

The data-driven objective is based on minimizing the following KL divergence:

DKL (ptarget(x)‖qθ(x)) . (17)

Reformulating the minimization of Equation 17 to a maximization problem, the lower bound based
on the summation over terms corresponding to each datum x(i) of a set of xDN =

{
x(i)

}N
i=1

is
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written as:

Lforward(θ,φ;xDN ) =

N∑
i=1

Erφ(z(i)|x(i))

[
− log rφ(z(i)|x(i)) + log qθ(x(i), z(i))

]
=−

N∑
i=1

DKL

(
rφ(z(i)|x(i))‖qθ(z(i))

)
+

N∑
i=1

Erφ(z(i)|x(i))

[
log qθ(x(i)|z(i))

]
. (18)

The objective above depicts the lower bound on the marginal log-likelihood and has been constructed
in the context of data-driven variational inference [51, 53, 58]. The first component in Equation 18
implies minimizing DKL

(
rφ(z(i)|x(i))‖qθ(z(i))

)
in an aggregation of all considered x(i). Hence,

in aggregation the pre-images of x(i), expressed by the approximate posterior, should resemble the
generative component qθ(z), whereas the latter term in Equation 18 accounts for the reconstruction
loss of encoded pre-images z(i) (encoded through rφ(z(i)|x(i))) to its origin x(i)).

Minimizing the reverse KL divergence as introduced in Equation 7 with

DKL (qθ(x)‖ptarget(x))

implies a tractable maximization with respect to (φ,θ) of the following objective based on [26]:

L(φ,θ) = −β 〈U(x)〉qθ(x,z)︸ ︷︷ ︸
∗

+Eqθ(x,z) [log rφ(z|x)]︸ ︷︷ ︸
†

+H(qθ(x, z))︸ ︷︷ ︸
‡

. (19)

We comment on the meaning of the indicated terms in Equation 19; however, note that the optimization
always needs to be regarded in the composition of all terms.

∗) Maximizing L(φ,θ) seeks to minimize β 〈U(x)〉qθ(x,z), which corresponds to the average
potential energy of the system evaluated under the generative model qθ(x).

†) Maximize the expected log-probability that a given fine-scale realization x(i) (with the
corresponding latent pre-image z(i) ) drawn from the joint of the generative model, qθ(x, z),
can be reconstructed by rφ(z|x) based on x(i).

‡) Maximize the entropy of the generative model H(qθ(x, z)).

Note that all aforementioned contributions must be seen in the composition, and maximizing L(φ,θ)
with respect to (φ,θ) maximizes the balance of all. Most important is that the involved objective
in the reverse KL divergence does not encompass any expectations with respect to ptarget(x), which
need to be approximated by data as is the case in Lforward(θ,φ;xDN ).

We discuss in the next section the particulars of the optimization with respect to θ,φ, and also specify
the form of the densities involved, i.e., qθ and rφ.

1.5 Model specification and gradient derivation

In the sequel we introduce a general approach for parametrizing distributions qθ(x, z) and rφ(z|x)
and provide an approach for optimizing parameters with variance-reduction methods, enabling
accelerated convergence.

1.5.1 Model specification

We base the model specification on previous work in the context of data-driven CVs discovery [57].
The model involves two components, (q(x|z) and q(z)), with respect to the generative path and the
encoder r(z|x) in the recognition path.

As we seek to obtain a set of lower-dimensional coordinates representing characteristic and slow
coordinates of the system, we aim to provide complexity in the mapping and thus the encoder and
decoder components r(z|x) and q(x|z), respectively, and simple descriptions of the CVs through
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q(z). Pushing complexity to the involved mappings and assuming simple correlations in q(z) yields
CVs capturing the most relevant features of the atomistic system compressed in low dimensions [59,
60].

The distribution qθc(z), which the obtained CVs are supposed to follow and which we desire to be
simple, is represented as a standard Gaussian with unit diagonal variance:

qθc(z) = q(z) = N (z;0, I). (20)

The simplicity induced by Equation 20 is balanced by employing a flexible mapping given latent CVs
z to fine-scale atomistic coordinates x (probabilistic decoder) with

qθcf(x|z) = N (x;µθcf(z),Sθcf) , (21)

where the nonlinear mapping
µθcf(z) = fµθcf

(z), (22)

with z 7→ fµθcf
(z) (fµθcf

: Rnc 7→ Rnf ) is expressed by a flexible (multilayer) neural network [61–63].
The Gaussian in Equation 21 with the flexible mean µθcf(z) is then fully defined by considering a
diagonal covariance matrix with Sθcf = diag(σ2

θcf
) [64]. We omit the subscripts of θ, as the latent

generator q(z) does not depend on parameters. Thus, we write θ = θθcf . We treat the entries σ2
θ,j

directly as parameters without dependence on latent CVs z. Maintaining σ2
θ,j > 0 is ensured by

optimizing log σ2
θ,j instead.

In a similar fashion, compared to the model of qθcf(x|z), we express the encoder that approximates
the actual posterior distribution p(z|x) as follows:

rφ(z|x) = N (z;µφ(x),Sφ(x)) , (23)

with the diagonal covariance matrix Sφ(x) = diag
(
σ2
φ(x)

)
. Likewise, µφ(x) and logσ2

φ(x) are

obtained from encoding neural networks fµφ (x) and fσφ (x), respectively:

µφ(x) = fµφ (x) and logσ2
φ(x) = fσφ (x). (24)

The actual but intractable posterior q(z|x) will differ from a multivariate normal distribution, for
which we compensate by providing a flexible mean in rφ(z|x). Structural correlations revealed by
a full rank covariance matrix represent an interesting avenue to be explored [65]; however, this is
not part of this paper. The employed models resemble those developed earlier in the context of CV
discovery. Therefore, we refer to the discussion in [57] justifying the use of the neural networks.

We utilize the following general structure for the decoding neural network fµθcf
(z):

f
µ,Kq
θ (z) =

(
l
(Kq+1)
θcf

◦ ã(Kq) ◦ l(Kq)θ ◦ · · · ◦ ã(1) ◦ l(1)
θ

)
(z). (25)

with Kq hidden layers. In a similar manner, we define the encoding networks for µφ(x) and σ2
φ(x)

of rφ(z|x):

fKrφ (x) =
(
a(Kr) ◦ l(Kr)

φ ◦ · · · ◦ a(1) ◦ l(1)
φ

)
(x), (26)

which leads to the mean and diagonal terms of the covariance matrix with

fµφ (x) = l
(Kr+1)
φ

(
fKrφ (x)

)
and fσφ (x) = l

(Kr+2)
φ

(
fKrφ (x)

)
. (27)

The linear layers used in the above expressions are denoted as l(i), e.g., mapping a variable y to
the output with l(i)(y) = W (i)y + b(i). The nonlinearities in f (·)

(·) are implied by activation a(·).
Encoding and decoding functions are indicated by the superscripts φ and θ, respectively. Activation
functions belonging to the encoder are a(i), and those involved in decoding z are ã(i). The size of
W (i) is specified by the input dimension, which could be the output of a precedent layer l(i−1)(y),
and the output dimension, which we specify with dl(i) . This leads to a matrix W (i) of dimension
dl(i)×dl(i−1) . The corresponding parametrization details with depthK and activations of the networks
are specified with the corresponding numerical illustrations in Section 2.
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1.5.2 Gradient computation and reparametrization

This section is devoted to deriving relevant gradients of the objective L(φ,θ) in Equation 12, which
involve the fine-scale potential energyU(x). We show a noise-reducing gradient estimator by utilizing
reparametrization [66, 67].

The focus is on the first component in Equation 12, which depends only on the parameters θ. We
write for the corresponding derivative:

−β ∂

∂θ
〈U(x)〉qθ(x|z) =− β ∂

∂θ

∫ ∫
qθ(x|z)q(z)U(x) dx dz

=− β
∫
q(z)

∂

∂θ

(∫
qθ(x|z)U(x) dx

)
︸ ︷︷ ︸

∇θEqθ(x|z)[U(x)]

dz. (28)

In the last line of the above equation, we note the expression∇θEqθ(x|z) [U(x)]; this is for the case of
using approximate MC estimators, highly affected by noise, as discussed in [53]. This would hamper
the optimization even when employing stochastic techniques. The variance of the approximate
estimator of ∇θEqθ(x|z) [U(x)] can be reduced by the reparametrization of qθ(x|z). This is done by
introducing an auxiliary random variable ε, which gives rise to x by a differentiable transformation:

x = gθ(ε; z) with ε ∼ p(ε). (29)

With the mapping, gθ : ε→ z, the following holds by change of variables:

qθ(x|z) = p
(
g−1
θ (x; z)

)∣∣∣∣∂g−1
θ (x; z)

∂x

∣∣∣∣, (30)

where the inverse function of gθ, g−1
θ : x → ε leads to ε = g−1

φ (x; z). Different possibilities of
auxiliary distributions and invertible transformations are discussed in more detail in [68]. With the
introduced transformation, we can rewrite the derivative with:

∇θEqθ(x|z) [U(x)] = Ep(ε) [∇θU (gθ(ε; z))]

= Ep(ε)
[
∂U (gθ(ε; z))

∂x

∂gθ(ε; z))

∂θ

]
. (31)

The auxiliary random variables ε follow a Gaussian with ε(l) ∼ p(ε) = N (0, I). The corresponding
transformation for representing the random variables x is:

x = gθ(ε; z) = µθ(z) + σθ(z)� ε. (32)

Replacing the expression∇θEqθ(x|z) [U(x)] in Equation 28 with Equation 31 leads to:

−β ∂

∂θ
〈U(x)〉qθ(x|z) = −β

〈
Ep(ε)

[
∂U (gθ(ε; z))

∂x

∂gθ(ε; z))

∂θ

]〉
q(z)

= −β
〈
∂U (gθ(ε; z))

∂x︸ ︷︷ ︸
=−F(x)

∂gθ(ε; z))

∂θ

〉
p(ε)q(z)

. (33)

First, the physically less interesting part in Equation 33 is the contribution ∂gθ(ε;z))
∂θ , which can be

estimated by employing efficient backpropagation and automatic differentiation algorithms for neural
networks [61, 69]. However, the more physically relevant component, the gradient of the atomistic
potential, ∂U(gθ(ε;z))

∂x , is involved in Equation 33. The gradient of the potential U(x) with respect to
x equals the negative interatomic force F(x), evaluated at x, where x = gθ(ε; z). This latter term
incorporates physics into the gradient computation of L(φ,θ) in the form of interatomic forces. This
is the source from which physics are embedded into our proposed model and drives the optimization
of L(φ,θ) by querying the force field at samples of qθ(x). Notably, the forces are incorporated at
atomistic positions x, which are determined by sampling as follows.
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(i) Draw a sample from the generative distributions: z(i) ∼ q(z) which is simple to sample
from.

(ii) Then obtain a sample from the auxiliary distribution: ε(j) ∼ p(ε).

(iii) Determine the corresponding atomistic representation of (z(i), ε(j)) with: x(i,j) =
gθ(ε(j); z(i)) = µθ(z(i)) + σθ(z(i))� ε(j).

This means we evaluate the force F at samples x(i,j); no reference data are required in this process.

The force evaluation at atomistic coordinates x is the heart of common MD software such as
LAMMPS [70], GROMACS [71–77], and OpenMM [78]. The MD simulators are highly sophisti-
cated in terms of efficiency and allow us to employ this optimized force evaluation function in our
development.

In this work, we develop a PyTorch module that incorporates OpenMM [78] in the backward pass,
which enables efficient optimization by querying the forces computed by OpenMM at input positions
governed by qθ(x). We are continuously developing the software on GPU platforms, and it will be
made available5.

1.6 Training

Training the model parameters (φ,θ) requires some attention as variational models tend to be mode-
focusing [79, 80]. If parameters update too rapidly, in terms of configurations of ptarget(x) that have
been explored by qθ(x) thus far, relevant conformations could be missed. However, compared with
the data-driven approach, the proposed variational coarse-graining methodology offers strategies
ensuring that relevant conformations are captured and incorporates querying of the potential U(x)
into the learning procedure. In data-driven schemes, once the data is obtained, there is no control
on exploring unobserved conformations [6, 60]. Remedy, next to employing stochastic optimization
with adaptive step size control [81], provide tempering approaches [82, 83]. These start at high
initial temperatures or low inverse temperatures, with, e.g., 0 ≤ β1, whereas β = 0 resembles
a uniform target distribution. A sequence of K temperatures and related inverse temperatures
0 ≤ β1 · · · ≤ βk ≤ . . . βK yields a sequence of target distributions with [84–86]

ptarget(x;βk) =
1

Z(βk)
e−βkU(x), ∀ k ∈ {1, . . . ,K}, (34)

while βK equals the target simulation temperature βtarget.

Instead of directly minimizing DKL (q(x)‖ptarget(x;βtarget)), we minimize subsequent
DKL (q(x)‖ptarget(x;βk)) while we obtain optimal (φk,θk), which we use as initial parame-
ters for minimizing DKL (q(x)‖ptarget(x;βk+1)). However, the size of the increment between two
subsequent temperature steps ∆βk = βk+1 − βk is a difficult choice.

Therefore, we develop an adaptive scheme for gradually increasing βk, which adjusts the proposed
∆βk such that the relative difference in subsequent KL divergences estimated at βk and βk+1 does
not exceed a threshold cmax. We define the relative increase of the KL divergence between βk and
βk+1 with:

DKL (q(x)‖ptarget(x;βk+1))−DKL (q(x)‖ptarget(x;βk))

DKL (q(x)‖ptarget(x;βk))
. (35)

By employing the derived upper bound on the KL divergence, which is defined in Equation 16, we
can rewrite Equation 35 as

ck =
log(Z(βk+1))− log(Z(βk)) + (βk+1 − βk) 〈U(x)〉q(x,z)

log Z(βk) + βk 〈U(x)〉q(x,z) − 〈log r(z|x)〉q(x,z) −H(q(x, z))
. (36)

Besides the (log-)difference of the normalization constants, log(Z(βi+1)) − log(Z(βi)), and
log(Z(βk), all remaining components in Equation 36 are accessible through MC estimators. The

5Software available upon publication on https://github.com/mjs.../....
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supporting material in Appendix B includes an approximation of log(Z(βk+1)) − log(Z(βk) and
log(Z(βk). The procedure for updating the temperature is summarized in Algorithm 1.

Algorithm 1: Tempering scheme for updating βk. We set ∆βmax = 1.0× 10−3 and cmax = 1.0.
Input: Converged model with its parameter (φk,θk) at current inverse temperature βk; cmax,

maximal relative increase in DKL; ∆βmax, the temperature increment; Current step k.
Output: βk+1

1 Initialize: s := 0, fs := 1.0.
2 while csk > cmax do

Propose new inverse temperature βsk+1:
3 βsk+1 = βk + fs∆βmax

Estimate rel. increase csk with proposed βsk+1:
4 See computation in Equation 36.

Update fs for proposing a new maximal increase in β:
5 fs+1 = 0.6fs

Update step:
6 s = s+ 1.
7 Set: βk+1 = βsk+1

8 Update: k = k + 1

9 Continue optimization with: log ptarget(x;βk) ∝ eβkU(x)

2 Numerical illustrations

The following section demonstrates the developed methodology based on a double well potential in
Section 2.1 and an alanine dipeptide in Section 2.2.

2.1 Double well

This section shows the capabilities of the proposed method in the context of a two-dimensional double
well potential energy function U(x) (dim(x) = 2) that exhibits two distinct modes distinguishable in
the x1 direction. One of the modes is favorably explored owing to its lower potential energy. The
potential is quadratic in the x2 direction, as depicted in Figure 1:

U(x) =
1

4
x4

1 − 3 · x2
1 + x1 +

1

2
x2

2. (37)

The double well potential in Equation 37 and the implied target distribution
ptarget(x;β = 1) ∝ e−βU(x) result in a distribution that is challenging to explore with
purely random walk MCMC and without performing extensive fine-tuning of the proposal step. A
test MCMC estimator, which was as fair as possible, did not discover the second mode for x1 > 0
after 1× 105 steps. The natural CV of the potential U(x) and thus of ptarget(x) ∝ e−U(x) is the x1

coordinate. The x1 direction distinguishes the two modes that ptarget(x) exhibits. We expect our
algorithm to reveal CVs z “equal” to x1 or having high correlation with x1. We put “equal” in quotes
as we work in a probabilistic framework. The dimensionality of dim(z) is 1.

The functional form and parameters have been taken from [22] to ensure comparability. However,
note that we seek to identify simultaneously the lower-dimensional characteristics revealing the
relevant physics, encoded in CVs, and obtain a generative CG model for predictive purposes. In [22],
the focus was on the generative component. The CVs utilized for learning are selected rather than
revealed from the physics. The latent CVs z have the same dimensionality as x owing to the use of
invertible neural networks that require dim(z) = dim(x) [23].

We employ the model as introduced in Section 1.5.1 and define the unspecified options such as the
number of layers, layer dimensions, and activation functions used in the encoder and decoder as in
Tables 1 and 2, respectively. To train the parameters (φ,θ), we employ a tempering scheme as
introduced in Section 1.6 and specified in Algorithm 1 with initial β0 = 1× 10−10, while the target is
defined with βK = 1. For all numerical illustrations, we employ ADAM stochastic optimization [88]
with α = 0.001, β1 = 0.9, β2 = 0.999, and εADAM = 1.0× 10−8. The expectations with respect to
q(x, z) are computed based on J = 1000 samples.
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Figure 1: Reference potential energy U(x). The color relates to the value of U(x) quantified by the
logarithmic color bar on the right. Most MCMC random walk approaches will discover only one of
the depicted potential energy basins.

Linear layer Input dimension Output
dimension

Activation
layer

Activation func-
tion

l
(1)
φ dim(x) = 2 d1 a(1) SeLu6

l
(2)
φ d1 d2 a(2) SeLu
l
(3)
φ d2 d3 a(3) TanH
l
(4)
φ d3 dim(z) None -
l
(5)
φ d3 dim(z) None -

Table 1: Network specification of the encoding neural network with d{1,2,3} = 100.

Linear layer Input dimension Output
dimension

Activation
layer

Activation func-
tion

l
(1)
θ dim(z) = 1 d3 ã(1) Tanh
l
(2)
θ d3 d2 ã(2) Tanh
l
(3)
θ d1 dim(x) None -

Table 2: Network specification of the decoding neural network with d{1,2,3} as defined in Table 1.
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We will assess the trained model with respect to its predictive power and the obtained CVs in the
following.

2.1.1 Predictive CG model

Figures 2 and 3 show intermediate results obtained while training the model. The left columns
depict a two-dimensional (2D) histogram containing the target histogram based on a long reference
simulation obtained by employing the Metropolis-adjusted Langevin algorithm [89] at β = 1. Next
to the histogram of ptarget(x;β = 1), we provide 2D histograms of intermediate predictions at βk, as
indicated in the sub-caption. The predictive histograms are obtained by drawing J samples from the
predictive distribution qθ(x). The latter is very simple and computationally efficient owing to the
use of ancestral sampling [25] of the generative model, as explained in the Section 1.2. The right
columns of Figures 2 and 3 provide the reference potential energy U(x1, x2 = 0), the intermediate
target potential βkU(x1, x2 = 0), and the predicted potential U pred

k (x1, x2 = 0) after convergence of
(φ,θ) at temperature βk. For the intermediate steps, we estimate U pred

k (x1, x2 = 0) as follows:

U pred
k (x1, x2 = 0) ∝ − 1

βk
log qθ(x1, x2 = 0). (38)

We note that the evaluation of log qθ(x1, x2 = 0) requires approximation of the integral
log qθ(x1, x2 = 0) =

∫
q(x|z)q(z) dz, which induces noise. The aforementioned integral has

been approximated by N = 5000 samples drawn from q(z).

Figure 4(a) shows the overall convergence of the model, expressed in the form of the reverse KL
divergence (Equation 7) and the forward KL divergence (Equation 6); the latter, which relies on the
data, is only used for illustrative purposes. Data for evaluating DKL (ptarget(x)‖qθ(x)) were not used
in the training process. We compare reference statistics (again based on data which were not used
during training) with statistics estimated based on the efficient predictive distribution qθ(x) in Figure
4(b)

2.1.2 Predictive collective variables

The proposed approach provides an efficient CG model that can be employed for predictive purposes,
as described in the previous section. We claim that in addition to obtaining a CG model, we can
provide relevant insights by identifying CVs of the system. In the double well example, one would
expect the CV to be the x1 coordinate that separates the two modes, where conformational changes
are implied by moving along x1.

To visualize the assigned CVs given samples x(i) ∼ qθ(x), we plot samples as dots in Figure 5, while
the color of the x(i) is assigned based on the corresponding value of the CV. We note that for every
x(i) there exists a whole distribution of CVs rφ(z|x(i)), as we work in a probabilistic framework.
The assigned color in Figure 5 is based on the mean of rφ(z|x(i)), which is obtained by evaluating
µφ(x(i)).

The (color) gradient of z with respect to x is almost exactly parallel to the x1-direction, which implies
that the revealed CV z is (probabilistically) parallel to the x1 axis and thus meets our expectations.
The proposed approach reveals the relevant, slow, CV x1 solely by evaluating U(x) under qθ(x).
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(a) Histogram of qθ(x) at β ≈ 0 and of ptarget(x). (b) U(x1, x2 = 0) at β ≈ 0.

(c) Histogram of qθ(x) at β ≈ 0.2 and of
ptarget(x).

(d) U(x1, x2 = 0) at β ≈ 0.2.

(e) Histogram of qθ(x) at β ≈ 0.36 and of
ptarget(x).

(f) U(x1, x2 = 0) at β ≈ 0.36.

Figure 2: The left column shows histograms of the target ptarget(x) (at β = 1) and predictions based
on qφ(x) at the indicated temperature β in the subcaptions. The right column shows a 1D slice
through the potential energy U(x) at x2 = 0, emphasizing the two distinct modes. The figures
include the reference potential for the indicated temperature βk with βkU(x) and an estimation of
U pred
k (x) based on qθ(x).
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(a) Histogram of qθ(x) at β ≈ 0.7 and of
ptarget(x).

(b) U(x1, x2 = 0) at β ≈ 0.7.

(c) Histogram of qθ(x) at β ≈ 1 and of ptarget(x). (d) U(x1, x2 = 0) at β ≈ 1.

Figure 3: The left column shows histograms of the target ptarget(x) (at β = 1) and predictions based
on qφ(x) at the indicated temperature β in the subcaptions. The right column shows a 1D slice
through the potential energy U(x) at x2 = 0, emphasizing the two distinct modes. The figures
include the reference potential for the indicated temperature βk with βkU(x) and an estimation of
U pred
k (x) based on qθ(x).
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(a) β ≈ 0 (b) β ≈ 0.36

(c) β ≈ 0.7 (d) β ≈ 1

Figure 5: Samples x(i) ∼ qθ(x) at the indicated temperature β are depicted as dots, whereas the
assigned color of x(i) corresponds to its latent CV obtained by the mean of rφ(z|x(i)). The color
bar below the images shows the color corresponding to the assigned value of the CV z given x. The
figure is based on N = 1× 104 samples x(i).
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φ ψ

(a) Dihedral angels for ALA-2.

β-1 β-2

α

β-2β-1

(b) Characteristic conformations according
[91].

Figure 6: Dihedral angles (left) and (φ, ψ) statistics of a reference simulation with characteristic
modes (right).

2.2 ALA-2

After demonstrating the functionality of the proposed scheme for a double well potential energy, we
are interested in addressing an atomistic system. The following is devoted to the CV discovery of
alanine dipeptide (ALA-2) in the context of an implicit solvent. Characteristic coordinates of the
ALA-2 peptide include the dihedral angles (φ, ψ), as shown in Figure 6(a). Distinct combinations of
the dihedral angles characterize three distinguishable (α, β-1, β-2) conformations, as provided in the
Ramachandran plot [90] in Figure 6(b) [91]. The peptide consisting of 22 atoms can be described
by 60 effective degrees of freedom (rigid body motion removed); however, we store the complete
Cartesian coordinate vector x with dim(x) = 66, where six degrees of freedom are fixed. The exact
representation of ALA-2 in x with coordinate bookkeeping is given in the Appendix C.

2.2.1 Reference model setting

Applying the proposed methodology does not require the production of any reference atomistic
trajectories. However, we are interested in comparing our obtained predictions from the generative
CG model to reference observables estimated by a reference MD simulation. We refer to Appendix
D for all necessary details obtaining the MD trajectory. Nevertheless, for the sake of evaluating
forces, we need to specify system properties such as the force field, which in this case is AMBER
ff96 [92–94]. We employ an implicit water model based on the generalized Born approach [95, 96],
which serves as a solvent. The temperature of interest is T = 330 K.

2.2.2 Model specification

The general model structure introduced earlier in Section 1.5.1 is also employed in the context of
the ALA-2 setting. We mostly rely on findings in [57], where an identical system was explored on
the basis of data-driven forward KL divergence minimization. All required details for the model are
specified in Tables 3 and 4 for the encoder (rφ(z|x)) and decoder (qθ(x|z)), respectively. Similar to
the previous example in Section 2.1, we employ a tempering scheme as introduced in Section 1.6 and
specified in Algorithm 1 with initial β0 = 1× 10−14 · βK , while the target temperature is defined by
βK = 1

kBT
and T = 330 K. The inverse temperature β0 occurs as a multiplicative factor, multiplying

the potential energy U(x). For gradient estimation, the interatomic force F(x) is multiplied by βk.
In the variational approach presented in this work, we evaluate the force field under samples from
qθ(x). However, when qθ(x) has not yet learned, samples x(i) will potentially yield high-energy
states associated with large forces. According to experimental results, the magnitude of F(x) in early
training stages reaches ±1× 10−18. Therefore, the initial inverse temperature is chosen such that
β0F(x) evaluated under qθ(x) yields values of ±1× 101. This implies that the embedded physics,
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Linear layer Input
dimension

Output dimen-
sion

Activation
layer

Activation func-
tion

l
(1)
φ dim(x) = 66 d1 a(1) SeLu7

l
(2)
φ d1 d2 a(2) SeLu
l
(3)
φ d2 d3 a(3) Log Sigmoid 8

l
(4)
φ d3 dim(z) None -
l
(5)
φ d3 dim(z) None -

Table 3: Network specification of the encoding neural network with d{1,2,3} = 170.

Linear layer Input
dimension

Output dimen-
sion

Activation
layer

Activation
function

l
(1)
θ dim(z) = 2 d3 ã(1) Tanh
l
(2)
θ d3 d2 ã(2) Tanh
l
(3)
θ d2 d1 ã(3) Tanh
l
(4)
θ d1 dim(x) None -
Table 4: Network specification of the decoding neural network with d{1,2,3} = 120.

expressed by interatomic forces F(x), are weak in the early training stages and are emphasized as
the learning process proceeds with increasing βk. For further details, refer to Appendix F.

The stochastic optimization algorithm is ADAM [88] with α = 0.001, β1 = 0.9, β2 =
0.999, εADAM = 1.0× 10−8. We employ J = 2000 samples for computing expectations with
respect to qθ(x) throughout the training process. Initially, in the early training stages, using fewer
samples does not influence the training. The number of samples should be increased once the model
has been refined and comes closer to ptarget(x).

2.2.3 Collective variables

When training the model with its encoder and decoder components rφ(z|x) and qθ(x|z), it is
important that these consistently map a generated sample z(i) ∼ q(z) to x(i) through the decoder
qθ(x|z), and from the decoded atomistic configuration x(i) back to its origin, the value of the CV
z(i) it has been generated from. The projection from x(i) to the according CV is enabled through
the encoder rφ(z|x). After some initial iterations optimizing (φ,θ), the encoder and decoder work
consistently as depicted in Figure 7.

In Figure 8 we utilize the identified encoder rφ(z|x), which assigns CVs to an input atomistic
configuration, for encoding a reference test dataset. This dataset has not been used for training and
is used here solely for visualization purposes. The test data (generated according to Appendix D)
contains atomistic configurations from multiple characteristic modes based on their dihedral angle
values (φ, ψ) as shown in Figure 6(b). Given a datum from the test dataset x(i), we can assign the
corresponding value of its CV by employing the mean µφ(x(i)) of the approximate posterior over
the latent variables rφ(z|x). The assigned CV depicts the pre-image of the atomistic configuration
in the reduced CV space. It is important to note in Figure 8 that atomistic configurations belonging
to characteristic conformations (α, β-1, β-2) are identified by rφ(z|x) and form clusters in the CV
space. We note that the conformations β-1, β-2 interleave with each other in regions around z1 = 0.
An explanation for this overlap is the similarity of (φ, ψ) combinations in the Ramachandran plot in
Figure 6(b). Separate from the β configurations is the cluster associated with α configurations in the
CV space. The latter differ significantly with respect to the (φ, ψ) pairs from the β conformations.

The implied similarity of, e.g., β conformations in the CV space is in accordance with the expectations
on dimensionality reduction methods. Similar atomistic—or, in general, observed—coordinates
should map to similar regions in their latent lower-dimensional embedding, as emphasized in [5].
This is achieved in, e.g., multidimensional scaling [97] or isomap [10]. The presented dimensionality
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Figure 7: Samples from qθ(z) (blue, filled) are decoded with qθ(x|z) and encoded with rφ(z|x)
(orange, no facecolor). We consider the means of aforementioned distributions for performing the
decoding and encoding processes. Re-encoding the decoded z(i) matches its origin.

Figure 8: Representation of z-coordinates of test data assigned by the mean of rφ(z|z), which we
learn by minimizing the reverse KL divergence without reference data. Characteristic conformations
of ALA-2 are indicated in: α black, β-1 blue, and β-2 red color. Without any prior physical
information and in the complete absence of any data, the encoder identifies physically relevant
coordinates, which are related to φ, ψ values.
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φ = 97.1°
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Figure 9: Predicted configurations x (including dihedral angle values) with µθ(z) of pθ(x|z). As
one moves along the z1 axis, we obtain for the given CVs atomistic configurations x reflecting the
conformations α, β-1, and β-2. All rendered atomistic representations in this work were created by
VMD [98].

reduction relies solely on evaluating the force field F(x) at generated samples from qθ(x), without
using any data, and is differentiable with respect to x.

The hidden and lower-dimensional physically characteristic generative process is emphasized further
in Figure 9. We illustrate predicted atomistic configurations x given the marked (circle) values of the
CVs z. The change of characteristic (φ, ψ) dihedrals can be observed by moving from the red (β-2)
to the blue region (β-1) in the CV space and observing the configurational change in the predicted
atomistic configurations, given the indicated CVs. The depicted atomistic configurations are obtained
using the input CV z and the mean of qθ(x|z), which is expressed as a neural network with µθ(z).
The probabilistic decoder qθ(x|z) is a distribution, implying that given one value of the CV, several
atomistic realizations can be produced. For illustrative reasons we represent the mean µθ(z).

To obtain a better understanding of the meaning of identified CVs in terms of the dihedral angles
(φ, ψ), we visualize them by mapping given values of z to atomistic configurations and compute the
(φ, ψ) values assigned to the corresponding z, as shown in Figure 10. Again, in the probabilistic
model, we draw multiple atomistic realizations x given one CG representation z. The realization for
a given z fluctuates in terms of bonded vibrations rather than any change in the dihedrals (φ, ψ). We
observe a strong correlation between (φ, ψ) and the CVs z.

In addition to the visual assessment given in Figure 9, we show quantitatively that the structural
properties of atomistic configurations generated through qθ(x) truly capture those of a reference
trajectory at T = 330 K, as shown in Figure 11. Figure 11 provides histograms over bonding
distances over all bonded atoms in the system. Reference statistics of bond lengths are compared with
those based on generated samples of the predictive distribution qθ(x). Figure 12 provides estimated
observables based on the predictive model and a reference trajectory. The observables are computed
as explained in Appendix E.
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Figure 10: Predicted dihedrals (φ, ψ) for the latent CVs. The depicted (φ, ψ) values were obtained
from atomistic configurations given a CV value z through the mean of qθ(x|z), µθ(z).

21



0.0 0.5 1.0 1.5 2.0
0

5

CH3(1)--C(4)

0.0 0.5 1.0 1.5 2.0

C(4)--O(5)

0.0 0.5 1.0 1.5 2.0

H1(0)--CH3(1)

0.0 0.5 1.0 1.5 2.0

CH3(1)--H2(2)

0.0 0.5 1.0 1.5 2.0

CH3(1)--H3(3)

0.0 0.5 1.0 1.5 2.0
0

5

C(4)--N(6)

0.0 0.5 1.0 1.5 2.0

CA(8)--C(14)

0.0 0.5 1.0 1.5 2.0

C(14)--O(15)

0.0 0.5 1.0 1.5 2.0

CA(8)--CB(10)

0.0 0.5 1.0 1.5 2.0

CA(8)--HA(9)

0.0 0.5 1.0 1.5 2.0
0

5

N(6)--CA(8)

0.0 0.5 1.0 1.5 2.0

CB(10)--HB1(11)

0.0 0.5 1.0 1.5 2.0

CB(10)--HB2(12)

0.0 0.5 1.0 1.5 2.0

CB(10)--HB3(13)

0.0 0.5 1.0 1.5 2.0

N(6)--H(7)

0.0 0.5 1.0 1.5 2.0
0

5

C(14)--N(16)

0.0 0.5 1.0 1.5 2.0

C(18)--H1(19)

0.0 0.5 1.0 1.5 2.0

C(18)--H2(20)

0.0 0.5 1.0 1.5 2.0

C(18)--H3(21)

0.0 0.5 1.0 1.5 2.0

N(16)--C(18)

0.0 0.5 1.0 1.5 2.0
Bond length [Å]

0

5

N(16)--H(17)

Reference Predicted

Figure 11: Bonding distance statistics. In ALA-2, bonded atoms of a reference simulation (blue)
compared with histograms of the bond lengths of the predicted atomistic ensemble based on qθ(x)
(semi-transparent in the foreground in orange). The titles of the subplots indicate the relevant atom
names, and the corresponding atom id of the structure file of ALA-2 as provided in Appendix C is
shown in brackets. The physics, in the form of bonding distances, is well maintained in the generated
realizations. Predictive estimates are obtained by employing J = 2000 samples of qθ(x), and the
reference is based on N = 4000 MD snapshots.
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samples of qθ(x) and the reference by N = 4000 MD snapshots. Observables are estimated
according to Appendix E.
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3 Summary and outlook

We have presented a variational approach for revealing CVs of atomistic systems that additionally
yield a predictive CG model. We circumvent the need for reference data, which is supposed to
provide an approximation of the target distribution ptarget(x). The simulation of complex biochemical
systems and thus the obtained data may suffer from bias owing to insufficiently exploring all relevant
conformations. Conformations are separated by high free-energy barriers, which hamper efficient
exploration with brute-force MD [6]. The presented variational coarse-graining and CV discovery
approach is guided by evaluating interatomic forces under the predictive distribution qθ(x), where
sampling is computationally efficient. By embedding the atomistic force components, qθ(x) learns
from the target distribution ptarget(x). We derived an upper bound on the reverse KL divergence, in
which all terms are tractable, and discuss the physical underpinning of the components involved. The
derived upper bound is subject to minimization with respect to all model parameters. We provide a
variance-reducing gradient estimator based on reparametrization. Whereas variational approaches
are known for being mode focusing, remedy provides the introduced consistent tempering scheme,
alleviating the simultaneous learning of modes. We demonstrate the proposed algorithmic advances
with a double well potential energy and the ALA-2 peptide. Characteristic CVs have been identified
by the introduced optimization objective.

The following steps will be pursued in continuation of this work. Atomistic forces and thus gradients
span many orders of magnitude at initial iterations. This could lead to numerical instabilities. Thus,
we are interested in synthesizing the advantages of the forward and reverse KL divergences in the
context of atomistic systems. We propose an adaptive learning scheme that may rely in its early
training stages on a few data points. These are not required to reflect the whole phase space, but it is
important to have a basis for learning, e.g., the structure of the atomistic system with its approximate
bond lengths. This eases the problem of evaluating F(x) for the un-physical realizations that may be
predicted by qθ(x) in an early training phase:

E = γDKL (qθ(x)‖ptarget(x)) + (1− γ)DKL (ptarget(x)‖qθ(x)) . (39)

With γ ∈ [0, 1] weighting the overall contribution from the reverse and forward KL divergences,
we use an adaptive weight, γ(k), which implies dependence on the current iteration k. With the
proceeding learning process (increasing k), γ could increase up to γ = 1, so that we fully rely on
the variational approach and thus the associated physics expressed by the potential U(x) and forces
F(x). Minimizing the above objective Equation 39 with respect to model distributions synthesizes
the findings of this work and those of [57].

We furthermore propose the employment of the obtained qθ(x) for predictive purposes of systems at
different temperatures. This can be achieved by obtaining the implicitly learned predictive potential
expressed in terms of fine-scale coordinates at βtarget based on qθ(x):

U pred
θ (x) = − 1

βtarget
log qθ(x) + const. (40)

Assuming we are interested in simulating the same system at βnew where βnew 6= βtarget, we can
readily provide a generalized predictive distribution for any βnew,

q̃θ(x) ∝ e−βnewU
pred
θ (x), (41)

by employing the predictive potential U pred
θ (x) defined in Equation 40.

Finally, we emphasize the most relevant findings of this work. We have reformulated the identification
of CVs as an optimization problem, which additionally provides a predictive CG model. CVs are
revealed in the absence of any prior physical knowledge or insight, and thus in the absence of any
system-dependent assumptions. Instead of relying on reference data, we employ the minimization
of the reverse KL divergence and develop an inference scheme in the context of atomistic systems.
Thus, the optimization is solely guided by the evaluation of the potential U(x) and/or forces F(x) at
samples of the predictive distributions qθ(x). We have also developed an adaptive tempering scheme
based on findings of [29].
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A Relation with Expectation-Propagation

This section emphasizes the relationship of hierarchical variational models with expectation-
propagation (EP) [99].

The following is not directly relevant to optimization of the objective Equation (7), but it shows
the existence of an upper bound of the entropy term −Eq(x) [log q(x)]. Similar to Equation (9) one
denotes,

−Eq(x) [log q(x)] = −Eq(x) [log q(x)−DKL (q(z|x)||q(z|x))]

≤ Eq(x) [− log q(x) +DKL (r(z|x)||q(z|x))]

= Eq(x)

[
Er(z|x) [− log q(x)− log q(z|x) + log r(z|x)]

]
= Eq(x)

[
Er(z|x)

[
− log q(x)− log

q(x|z)q(z)

q(x)
+ log r(z|x)

]]
= Eq(x)

[
Er(z|x) [− log q(x|z)− log q(z) + log r(z|x)]

]
. (42)

The bound in Equation (42) is tractable if sampling from q(x) and r(z|x) is feasible. Both bounds
(Eqs. 42 and 9) show similarities to the derivation of EP [99] and variational Bayesian inference [100].
However, note that the lower bound in Equation (11) is connected to the objective in EP, although EP
only minimizes DKL(q‖r) locally. The bound derived with q(x) results in a tighter bound compared
with variational autoencoders with q(x|z), as H[q(x)] ≥ H[q(x|z)] (for details, see [101]).

B Estimating the relative increase of the KL divergence

The relative increase of the KL divergence induced by decreasing the temperature is denoted as in
Equation (36), with

ck =
log(Z(βk+1))− log(Z(βk)) + (βk+1 − βk) 〈U(x)〉q(x,z)

logZ(βk) + βk 〈U(x)〉q(x,z) − 〈log r(z|x)〉q(x,z) −H(q(x, z))
.

The following addresses the estimation of log(Z(βk+1))− log(Z(βk)) with ∆βk = βk+1 − βk:

Z(βk + ∆βk) =

∫
e−(βk+∆βk)U(x)dx (43)

=

∫
e−(βk+∆βk)U(x)

e−βkU(x)

Z(βk)

e−βkU(x)

Z(βk)
dx

= Z(βk)

∫
e−∆βkU(x)ptarget(x;βk) dx

= Z(βk)

∫
e−∆βkU(x) e

−βkU(x) r(z|x)

q(x|z) q(z)
q(x, z) dx dz.

We are interested in log(Z(βi+k))− log(Z(βk)). Therefore, we write:

log(Z(βi+1))− log(Z(βi)) = log

∫
e−∆βU(x) e

−βiU(x) r(z|x)

q(x|z) q(z)︸ ︷︷ ︸
w

q(x, z) dx dz (44)

≈ log

N∑
i=1

e−∆βU(x(i))W (i).

Equation (44) depicts a noisy Monte Carlo estimator for log(Z(βk+1)) − log(Z(βk)) based on
importance sampling [102] with the following normalized weights:

W (i) =
w(i)∑
w(i)

with w(i) ∝ e−βiU(x) r(z|x)

q(x|z) q(z)
. (45)
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As e−βiU(x)r(z|x) may be small for samples (x(i), z(i)) ∼ q(x, z), we use instead log w̄(i) with
log w̄(i) = logw(i) − a and a = max{logw(i)} to avoid numerical issues.

Whereas above we showed an approximate estimator for log(Z(βk+1))− log(Z(βk)), the following
addresses log(Z(βk)). To estimate the relative increase in the KL divergence, one requires the
normalization constant as mentioned in Equation (36). Multistage sampling [103] provides a way to
approximate Z(βi), given all previous Z(βk) with k < i and βi > βi−1:

Z(βi)

Z(0)
=
Z(β1)

Z(β0)
· Z(β2)

Z(β1)
· · · Z(βi−1)

Z(βi−2)
. (46)

The ratios Z(βk−1)
Z(βk−2) are given by Equation (44). The remaining component to be estimated is Z(0), as

we utilize the expression from Equation (44) to estimate the ratios of normalization factors. To avoid
learning parametrizations θ yielding almost uniform q(x) on an infinite domain, which occurs in the
limit when β = 0, we define the following auxiliary potential to restrict the domain:

Uaux(x) =


U(x), if x ∈ [−b, b]dim(x)

−uβx, x < −b
u
βx, x > b,

(47)

with u = 10× 102. The above extension does not influence the potential energy U(x) at relevant
temperatures.

The initial Z(β0) is computed with importance sampling. This is done only once upon convergence
of (θ,φ) for β0:

Z(β0) =

∫
e−β0U(x) dx (48)

=

∫
e−β0U(x) r(z|x) dx dz

=

∫
e−β0U(x) r(z|x)

q(x, z)︸ ︷︷ ︸
w

q(x, z) dx dz.

With samples (x(i), z(i)) ∼ q(x, z), we obtain the following unnormalized weights:

w(i) =
e−β0U(x(i)) r(z(i)|x(i))

q(x(i), z(i))
, (49)

or logw(i) = −β0U(x(i)) + log r(z(i)|x(i))− log q(x(i), z(i)). Then,

logZ(β0) = − logN + log

N∑
i=1

elogw(i)−c + c, (50)

with c = max(logw(i)).

C ALA-2 coordinate representation

We show the structure of the ALA-2 petpide in Figure 13. The numbers in the circles, which depict
the involved atoms of ALA-2, correspond to the order in which we assemble block-wise the Cartesian
coordinates (xi, yi, zi) of atom i to

x = (x1, y1, z1, x2, y2, . . . , x22, y22, z22)T ,

where i is the atom number as depicted in Figure 13. For removing rigid-body motion, we fix the Carte-
sian coordinates (x6, y6, z6) of atom 6, (x9, y9) of atom 9, and (y15) of atom 15. The employed PDB
structure file is available online at https://github.com/cics-nd/predictive-cvs/blob/
master/data_peptide/ala-2/ala2_adopted.pdb.
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Figure 13: ALA-2 structure with numbered atoms as used for decomposing x.

D Simulation of ALA-2

The procedure for generating a reference trajectory for computing reference observables of ALA-2
is identical to that employed in [57], whereas the data generation approach relies on [104]. The
utilized interaction force field is AMBER ff96 [92–94], resolved by an implicit water model based
on the generalized Born model [95, 96]. Incorporating an explicit water model would, obviously,
provide trajectories that would yield observables closer to the experimental reference. An Andersen
thermostat is used to maintain fluctuations around the desired temperature T = 330 K. All reference
simulations are carried out using Gromacs [71–77]. The time step is ∆t = 1 fs, with a preceding
equilibration phase of 50 ns. Thereafter, a trajectory snapshot is taken every 10 ps. Rigid-body
motions have been removed from the Cartesian coordinates.

E Observable estimation for ALA-2

We are interested in estimating observables based on predictive models, in contrast to those obtained
through reference MD simulations. In general, observables are evaluated as ensemble (MC) or
phase (MD) averages,

∫
a(x)ptarget(x) dx, by making use of qθ(x) and samples drawn by ancestral

sampling. We illustrate the radius of gyration (Rg) [104, 105], given as:

aRg(x) =

√∑
pmp‖xp − xCOM‖2∑

pmp
. (51)

The sum in Equation (51) considers all system atoms p = 1, . . . , P , with the atom mass mp and
Cartesian coordinate xp of each atom. The center of mass of the peptide is denoted by xCOM. A
histogram of aRg(x) reflects the statistics of the peptide’s average size, which characterize its various
conformations [105].

F Gradient normalization

During optimization of the objective in the context of atomistic systems, we encounter significant
forces, F(x). These differ in magnitude owing to sampling atomistic realizations, which induce, e.g.,
relatively small distances between bonded atoms. This leads to extreme force components. Gradient
normalization [106, 107] circumvents disruption of the current set of learned parameters (θ,φ) via a
single component attached with extreme magnitudes, owing to, e.g., short bonded distances. Once
training proceeds, and predicted atomistic realizations are closer to reasonable ones, the gradient
normalization becomes redundant, affecting only gradients in extreme settings where the absolute
values of F(x) ≥ 1× 1015. After an initial learning phase, such extreme magnitudes do not occur,
and thus the normalization does not affect or distort the physics induced by evaluating the force field
F(x).
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Given a batch of I samples
{
x(i)

}I
i=1

obtained from qθ(x), we estimate the gradient of the objective,
gi(x(i)) and calculate its `-2 norm:

li = ‖gi‖2. (52)

The average gradient norm is l̄ = 1/I
∑I
i=1 l

i, and we allow a maximal gradient norm based on
the mean with lmax = κ̇̄l, κ = 3.0. κ was determined by an empirical study. Those gradients with
li > lmax are normalized such that

gin =
lmax

li
gi. (53)

As mentioned earlier, realistic atomistic systems at relevant temperatures are not exposed to `-2
norms of gradients differing more as twice as compared with the gradient with the lowest `-2 norm.
Thus, the gradient normalization is inactive when learning realistic atomistic configurations.
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